【題目】已知反比例函數(shù)y= (m為常數(shù))的圖像在第一、三象限.

(1)m的取值范圍.

(2)如圖,若該反比例函數(shù)的圖像經(jīng)過ABOD的頂點D,點A,B的坐標(biāo)分別為(0,3),(-2,0).

①求出該反比例函數(shù)的表達(dá)式;

②設(shè)P是該反比例函數(shù)圖像上的一點,若OD=OP,則點P的坐標(biāo)為________________;若以D,O,P為頂點的三角形是等腰三角形,則滿足條件的點P________

【答案】(1)m<;(1)①反比例函數(shù)的表達(dá)式為y=.(3,2)(-2,-3)(-3,-2)

【解析】(1)由題意知1-2m>0,解不等式可得;(2)根據(jù)平行四邊形性質(zhì)求D的坐標(biāo),再代入y=,可求m;由 OD=OP,結(jié)合圖象可求出P的坐標(biāo).

解:(1)由題意知12m0,解得m.

(2)①在ABOD中,ADBOADBO.

因為A(0,3)B(2,0),

所以點D的坐標(biāo)是(2,3),

所以3

因此12m6,

所以反比例函數(shù)的表達(dá)式為y.

(32)(2,-3)(3,-2) 4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù) y的圖象與一次函數(shù)ymxb的圖象交于兩點A1,3,Bn,1).

1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;

2)根據(jù)圖象,直接回答:當(dāng)x取何值時,一次函數(shù)的值大于反比例函數(shù)的值;

3)連接AO、BO,求ABO的面積;

4)在y軸上存在點P,使AOP為等腰三角形,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校有一塊長方形空地,它的長和寬的比是31,面積為363.

1)求該長方形的長和寬;

2)如圖所示,工人師傅要在這塊空地上設(shè)計一個圓形區(qū)域和四個扇形區(qū)域進(jìn)行綠化,其中四個扇形區(qū)域的半徑與中間圓形區(qū)域半徑相同,若綠化區(qū)域的總面積為,請你幫助工人師傅計算一下中間圓形區(qū)域的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點P、Q分別是邊長為4cm的等邊ABCAB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cms。

⑴連接AQ、CP交于點M,在點P、Q運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);

⑵點P、Q在運動過程中,設(shè)運動時間為t,當(dāng)t為何值時,PBQ為直角三角形?

⑶如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQCP交點為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)求點C的坐標(biāo)及AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某種產(chǎn)品展開圖,高為3cm.

1)求這個產(chǎn)品的體積.

2)請為廠家設(shè)計一種包裝紙箱,使每箱能裝5件這種產(chǎn)品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計,紙箱的表面積盡可能。,求此長方體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量圖①②中的樹高,在同一時刻某人進(jìn)行了如下操作:

圖①:測得竹竿CD的長為0.8,其影長CE1,樹影AE長為2.4米.

圖②:測得落在地面上的樹的影長為2.8,落在墻上的樹影高1.2米.

請問圖①和圖②中的樹高各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:以直線AB上一點O為端點作射線OMON,將一個直角三角形的直角頂點放在O(COD=90°).

(1)如圖1,直角三角板COD的邊OD放在射線OB上,OM平分∠AOC,ONOB重合,則∠MON=_°

(2)直角三角板COD繞點O旋轉(zhuǎn)到如圖2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON的度數(shù)。

(3)直角三角板COD繞點O旋轉(zhuǎn)到如圖3的位置,OM平分∠ AOC ON平分∠BOD,猜想∠MON的度數(shù),并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)的6名志愿者,在“十一”假期組織區(qū)內(nèi)的未成年學(xué)生到公園秋游,公園的門票為每人40元,現(xiàn)有兩種優(yōu)惠方案,甲方案:志愿者免費,未成年學(xué)生按8折收費;乙方案:志愿者和未成年學(xué)生都按7折收費,若有名未成年學(xué)生.

1)當(dāng)時,甲方案需 元;乙方案需 元;

2)用含的式子表示兩種方案各需多少元?

3)當(dāng)為何值時,甲、乙兩種方案是一樣的.

查看答案和解析>>

同步練習(xí)冊答案