【題目】如圖,學(xué)校有一塊長方形空地,它的長和寬的比是3:1,面積為363.
(1)求該長方形的長和寬;
(2)如圖所示,工人師傅要在這塊空地上設(shè)計一個圓形區(qū)域和四個扇形區(qū)域進(jìn)行綠化,其中四個扇形區(qū)域的半徑與中間圓形區(qū)域半徑相同,若綠化區(qū)域的總面積為,請你幫助工人師傅計算一下中間圓形區(qū)域的直徑.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】惠民超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的多40件,甲、乙兩種商品的進(jìn)價和售價如下表:(注:獲利=售價-進(jìn)價)
甲種商品 | 乙種商品 | |
進(jìn)價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)惠民超市購進(jìn)甲、乙兩種商品各多少件?
(2)惠民超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲利潤多少元?
(3)惠民超市第二次以第一次的進(jìn)價又購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品每件降價1元銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多570元,求第二次乙商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,線段AB、CD相交于點(diǎn)O,連結(jié)AD、CB,我們把這個圖形稱為“8字型”根據(jù)三角形內(nèi)角和容易得到:∠A+∠D=∠C+∠B.
(1)用“8字型”
如圖2,∠A+∠B+∠C+∠D+∠E+∠F=___________;
(2)造“8字型”
如圖3,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____________;
(3)發(fā)現(xiàn)“8字型”
如圖4,BE、CD相交于點(diǎn)A,CF為∠BCD的平分
線,EF為∠BED的平分線.
①圖中共有________個“8字型”;
②若∠B:∠D:∠F=4:6:x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,給出以下六個條件中,以其中三個作為已知條件,不能判斷△ABC和△DEF全等的是( ) ①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F;
A.①⑤②B.①②③C.④⑥①D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知CA=CB,CD是經(jīng)過∠BCA頂點(diǎn)C的一條直線.E,F是直線CD上的兩點(diǎn),且∠BEC=∠CFA=α.
(1)若直線CD在∠BCA的內(nèi)部,且E,F在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,α=90°,則BE CF;EF |BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于α與∠BCA數(shù)量關(guān)系的條件 ,使①中的兩個結(jié)論仍然成立,補(bǔ)全圖形并證明.
(2)如圖3,若直線CD在∠BCA的外部,∠BCA=α,請用等式直接寫出EF,BE,AF三條線段的數(shù)量關(guān)系 .(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時,望向熒光屏幕畫面的“視線角”α約為20°,而當(dāng)手指接觸鍵盤時,肘部形成的“手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.
(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時,求眼睛與屏幕的最短距離AB的長;
(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學(xué)要求的100°?
(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積都相等的所有矩形中,當(dāng)其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設(shè)矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達(dá)式;
②當(dāng)y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認(rèn)為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù))的圖像在第一、三象限.
(1)求m的取值范圍.
(2)如圖,若該反比例函數(shù)的圖像經(jīng)過ABOD的頂點(diǎn)D,點(diǎn)A,B的坐標(biāo)分別為(0,3),(-2,0).
①求出該反比例函數(shù)的表達(dá)式;
②設(shè)P是該反比例函數(shù)圖像上的一點(diǎn),若OD=OP,則點(diǎn)P的坐標(biāo)為________________;若以D,O,P為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,點(diǎn)P是AC邊上的一動點(diǎn)(點(diǎn)P不與端點(diǎn)A、C重合),過點(diǎn)A作AE⊥BP于D,交BC的延長線于點(diǎn)E.
(1)求證:△ACE≌△BCP;
(2)在點(diǎn)P的移動過程中,若AD=DC,試求CP的長;
(3)試探索:在點(diǎn)P的移動過程中,∠ADC的大小是否保持不變?若保持不變,請求出∠ADC的大;若有變化,請說明變化情況.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com