【題目】在矩形ABCD中,AB=3,BC=4,E,F是對角線AC上的兩個動點,分別從A,C同時出發(fā)相向而行,速度均為1cm/s,運動時間為t秒,0≤t≤5.
(1)AE=________,EF=__________
(2)若G,H分別是AB,DC中點,求證:四邊形EGFH是平行四邊形.(相遇時除外)
(3)在(2)條件下,當t為何值時,四邊形EGFH為矩形.
【答案】(1)t, ;(2)詳見解析;(3)當t為0.5秒或4.5時,四邊形EGFH為矩形
【解析】
(1)先利用勾股定理求出AC的長度,再根據(jù)路程=速度×時間即可求出AE的長度,而當0≤t≤2.5時, ;當2.5<t≤5時,即可求解;
(2)先通過SAS證明△AFG≌△CEH,由此可得到GF=HE,,從而有,最后利用一組對邊平行且相等即可證明;
(3)利用矩形的性質可知FG=EF,求出GH,用含t的代數(shù)式表示出EF,建立方程求解即可.
(1)
當0≤t≤2.5時,
當2.5<t≤5時,
∴
故答案為:t,
(2)證明:∵四邊形ABCD是矩形,
∴AB=CD,AB∥CD,AD∥BC,∠B=90°,
∴AC===5,∠GAF=∠HCE,
∵ G、H分別是AB、DC的中點,
∴AG=BG,CH=DH,
∴AG=CH,
∵AE=CF,
∴AF=CE,
在△AFG與△CEH中,,
∴,
∴ GF=HE,
∴四 邊 形 EGFH是平行四邊形.
(3)解:如圖所示,連接GH,
由(1)可知四邊形EGFH是平行四邊形
∵點 G、H分別是矩形ABCD的邊AB、DC的中點,
∴ GH=BC=4,
∴ 當 EF=GH=4時,四邊形EGFH是矩形,分兩種情況:
①當0≤t≤2.5時,AE=CF=t,EF=5﹣2t=4,
解得:t=0.5
②當2.5<t≤5時,,AE=CF=t,EF=2t-5=4,
解得:t=4.5
即:當t為0.5秒或4.5時,四邊形EGFH為矩形
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2-1.
(1)當二次函數(shù)的圖象經過坐標原點O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;
(2)如圖,將△ABC繞頂點B按順時針方向旋轉60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=(m﹣2)xm2+m-4 +2x﹣1是一個二次函數(shù),求該二次函數(shù)的解析式.
【答案】y=﹣5x2+2x﹣1
【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2且m﹣2≠0,由此求得m的值,進而得到該二次函數(shù)的解析式.
試題解析:依題意得:m2+m﹣4=2且m﹣2≠0. 即(m﹣2)(m+3)=0且m﹣2≠0,
解得m=﹣3,
則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1
【題型】解答題
【結束】
21
【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高學生閱讀能力,我區(qū)某校倡議八年級學生利用雙休日加強課外閱讀,為了解同學們閱讀的情況,學校隨機抽查了部分同學周末閱讀時間,并且得到數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:
(1)將條形統(tǒng)計圖補充完整;被調查的學生周末閱讀時間眾數(shù)是多少小時,中位數(shù)是多少小時;
(2)計算被調查學生閱讀時間的平均數(shù);
(3)該校八年級共有500人,試估計周末閱讀時間不低于1.5小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是正方形對角線上一動點,點在射線上,且,連接,為中點.
(1)如圖1,當點在線段上時,試猜想與的數(shù)量關系和位置關系,并說明理由;
(2)如圖2,當點在線段上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當點在的延長線上時,請你在圖3中畫出相應的圖形,并判斷(1)中的猜想是否成立?若成立,請直接寫出結論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】常常聽說“勾3股4弦5”,是什么意思呢?它就是勾股定理,即“直角三角形兩直角邊長a,b與斜邊長c之間滿足等式:a2+b2=c2”的一個最簡單特例.我們把滿足a2+b2=c2的三個正整數(shù)a,b,c,稱為勾股數(shù)組,記為(a,b,c).
(1)請在下面的勾股數(shù)組表中寫出m、n、p合適的數(shù)值:
a | b | c | a | b | c |
3 | 4 | 5 | 4 | 3 | 5 |
5 | 12 | m | 6 | 8 | 10 |
7 | 24 | 25 | p | 15 | 17 |
9 | n | 41 | 10 | 24 | 26 |
11 | 60 | 61 | 12 | 35 | 37 |
… | … | … | … | … | … |
平面直角坐標系中,橫、縱坐標均為整數(shù)的點叫做整點(格點).過x軸上的整點作y軸的平行線,過y軸上的整點作x軸的平行線,組成的圖形叫做正方形網格(有時簡稱網格),這些平行線叫做格邊,當一條線段AB的兩端點是格邊上的點時,稱為AB在格邊上.頂點均在格點上的多邊形叫做格點多邊形.在正方形網格中,我們可以利用勾股定理研究關于圖形面積、周長的問題,其中利用割補法、作圖法求面積非常有趣.
(2)已知△ABC三邊長度為4、13、15,請在下面的網格中畫出格點△ABC并計算其面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com