【題目】已知:如圖,ABCDEF分別交AB、CD于點(diǎn)E、F,EG平分∠AEFFH平分∠EFD,求證:EGFH

證明:∵ABCD   ),

∴∠AEF=∠EFD   ),

EG平分∠AEFFH平分∠EFD   ),

∴∠   AEF

   EFD(角平分線定義),

∴∠   =∠   

EGFH   

【答案】已知,兩直線平行,內(nèi)錯角相等;已知;GEF;HFEGEF;HFE;內(nèi)錯角相等,兩直線平行

【解析】

ABCD平行,利用兩直線平行,內(nèi)錯角相等得到一對角相等,再由EGFH為角平分線,利用角平分線定義及等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行即可得證.

證明:∵ABCD(已知)

∴∠AEF=∠EFD(兩直線平行,內(nèi)錯角相等).

EG平分∠AEF,FH平分∠EFD(已知).

∴∠GEFAEF,∠HFEEFD,(角平分線定義)

∴∠GEF=∠HFE,

EGFH(內(nèi)錯角相等,兩直線平行).

故答案為:已知,兩直線平行,內(nèi)錯角相等;已知;GEFHFE;GEF;HFE;內(nèi)錯角相等,兩直線平行

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是等邊三角形,是直線上一點(diǎn),以為頂點(diǎn)做 交過且平行于的直線于,求證:;當(dāng)的中點(diǎn)時,(如圖1)小明同學(xué)很快就證明了結(jié)論:他的做法是:取的中點(diǎn),連結(jié),然后證明 從而得到,我們繼續(xù)來研究:

1)如圖2、當(dāng)DBC上的任意一點(diǎn)時,求證:

2)如圖3、當(dāng)DBC的延長線上時,求證:

3)當(dāng)的延長線上時,請利用圖4畫出圖形,并說明上面的結(jié)論是否成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠C=90°,∠BAC=60°,AB的垂直平分線DEABD,交BCE,若CE=3cm,則BE的長為(

A.6cm B.5cm C.4cm D.3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧波城區(qū)中考體育選測項(xiàng)目進(jìn)行了現(xiàn)場抽取,最終確定了寧波城區(qū)2018年體育選測項(xiàng)目:跳繩、籃球運(yùn)動投籃、立定跳遠(yuǎn),某中學(xué)隨機(jī)抽取了一部分九年級女同學(xué)進(jìn)行1分鐘跳繩抽測,將測得的成績繪制成如下的統(tǒng)計(jì)圖表:

級別

成績

頻數(shù)

A

2

B

7

C

14

D

12

E

本次隨機(jī)抽取了______名九年級女同學(xué);

頻數(shù)分布表中,成績是E級的頻數(shù)是多少?

若認(rèn)定“D,E”兩個級別的成績?yōu)?/span>優(yōu)秀,全校九年級女同學(xué)共有200人,請估計(jì)該校跳繩成績優(yōu)秀的女同學(xué)人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象關(guān)于原點(diǎn)成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)互為中心對稱函數(shù).

求函數(shù)的中心對稱函數(shù);

如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,二次函數(shù)的圖象經(jīng)過點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)互為中心對稱函數(shù);

請?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫出函數(shù)的大致圖象;

當(dāng)四邊形EPFQ是矩形時,請求出a的值;

已知二次函數(shù)互為中心對稱函數(shù),且的圖象經(jīng)過的頂點(diǎn)當(dāng)時,求代數(shù)式的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于點(diǎn)B、C,對稱軸為的拋物線經(jīng)過B、C兩點(diǎn),與x軸的另一個交點(diǎn)為A,頂點(diǎn)為D、點(diǎn)P是該拋物線上的一個動點(diǎn),過點(diǎn)P軸于點(diǎn)E,分別交線段BD、BC于點(diǎn)F、G,設(shè)點(diǎn)P的橫坐標(biāo)為

求該拋物線所對應(yīng)的函數(shù)關(guān)系式及頂點(diǎn)D的坐標(biāo);

求證:;;

當(dāng)為等腰三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有若勾三,股四,則弦五的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是把圖1放入長方形內(nèi)得到的,,AB=3AC=4,點(diǎn)D,E,FG,HI都在長方形KLMJ的邊上,則長方形KLMJ的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線EF//GH,且EFGH之間的距離為1,小明同學(xué)制作了一個直角三角形硬紙板ACB,其中∠ACB=90°,∠BAC=60°AC=1.小明利用這塊三角板進(jìn)行了如下的操作探究:

1)如圖1,若點(diǎn)C在直線EF上,且∠ACE=20°,求∠1的度數(shù);

2)若點(diǎn)A在直線EF上,點(diǎn)CEFGH之間(不含EF、GH),邊BC、AB與直線GH分別交于點(diǎn)D和點(diǎn)K

①如圖2,∠AKD、∠CDK的平分線交于點(diǎn)O.在△ABC繞著點(diǎn)A旋轉(zhuǎn)的過程中,∠O的度數(shù)是否變化?若不變,求出∠O的度數(shù):若變化,請說明理由;

②如圖3,在△ABC繞著點(diǎn)A旋轉(zhuǎn)的過程中,設(shè)∠EAK=n°,∠CDK=(4m-3n-10)°,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC 中,AD 平分∠BACAD=AB,CMAD M,請你通過觀察和測量,猜想線段 AB、AC 之和與線段 AM 有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案