【題目】在Rt△ABC中,CD為斜邊AB上的高,AC=3,BC=4,分別用r、r1、r2、表示△ABC,△ACD,△BCD內切圓的半徑,則( )
A.r+r1+r2=B.r+r1+r2=
C.r﹣r1﹣r2=﹣D.r﹣r1﹣r2=﹣
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB,DE為⊙O的直徑,過點D作弦DC⊥AB于點H,連接AE并延長交DC的延長線于點F.
(1)求證:
(2)若sinD=,求tanF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2.將扇形OAB沿過點B的直線折疊.點O恰好落在弧AB上點D處,折痕交OA于點C,則整個陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)天氣預報報道,福建省部分城市某日的最高氣溫如下表所示:
城市 | 福州 | 廈門 | 寧德 | 莆田 | 泉州 | 漳州 | 龍巖 | 三明 | 南平 |
最高氣溫(℃) | 11 | 16 | 11 | 13 | 13 | 17 | 16 | 11 | 9 |
則下列說法正確的是( )
A.龍巖的該日最高氣溫最高B.這組數(shù)據(jù)的眾數(shù)是16
C.這組數(shù)據(jù)的中位數(shù)是11D.這組數(shù)據(jù)的平均數(shù)是13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的內切圓,三個切點分別為D、E、F,若BF=2,AF=3,則△ABC的面積是
A.6B.7C.D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩商場以同樣價格出售同樣的商品:并且又各自推出不同的優(yōu)惠方案,在甲商場累計購物超過100元后,超出100元的部分按收費;在乙商場累計購物超過50元后,超出50元的部分按收費.顧客到哪家商場購物花費少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店專門銷售某種品牌的玩具,成本為30元/件,每天的銷售量y(件)與銷售單價x(元)之間存在著如圖所示的一次函數(shù)關系.
(1)求y與x之間的函數(shù)關系式;
(2)當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)為了保證每天的利潤不低于3640元,試確定該玩具銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求拋物線的解析式;
(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE最大.
①求點P的坐標和PE的最大值.
②在直線PD上是否存在點M,使點M在以AB為直徑的圓上;若存在,求出點M的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com