【題目】觀察下列等式:

1個等式:a1==

2個等式:a2==;

3個等式:a3==;

4個等式:a4==

按上述規(guī)律,回答以下問題:

(1)用含n的代數(shù)式表示第n個等式:an=_____=_____;

(2)式子a1+a2+a3+…+a20=_____

【答案】

【解析】

(1)由前四個等是可以看出:是第幾個算式,等號左邊的分母的第一個因數(shù)是就是幾,第二個因數(shù)是幾加1,第三個因數(shù)是2的幾加1次方,分子是幾加2;等號右邊分成分子都是1的兩項差,第一個分母是幾乘2的幾次方,第二個分母是幾加12的幾加1次方;由此規(guī)律解決問題;
(2)把這20個數(shù)相加,化為左邊的形式相加,正好抵消,剩下第一個數(shù)分裂的第一項和最后一個數(shù)分裂的后一項,得出答案即可.

(1)用含n的代數(shù)式表示第n個等式:an==

(2) a1+a2+a3+…+a20

=++++…+=.

故答案為:(1), ;

(2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進(jìn)價為120元、170元的A,B兩種型號的電風(fēng)扇,如表所示是近2周的銷售情況:(進(jìn)價、售價均保持不變,利潤=銷售收入一進(jìn)貨成本)

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

6

5

2200元

第二周

4

10

3200元

(1)求A、B兩種型號的電風(fēng)扇的銷售單價;

(2)若超市再采購這兩種型號的電風(fēng)扇共130臺,并且全部銷售完,該超市能否實現(xiàn)這兩批的總利潤為8010元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x(單位:小時)進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)直方圖和扇形統(tǒng)計圖.

根據(jù)圖中提供的信息,解答下列問題:

(1)補全頻數(shù)直方圖;

(2)求扇形統(tǒng)計圖中m的值和“E”組對應(yīng)的圓心角度數(shù);

(3)被調(diào)查的學(xué)生每周的課外閱讀時間的眾數(shù)落在哪一個范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是 ( )

①若m=n,則|m|=|n|; ②若m=-n,則|m|=|-n|;

③若|-m|=|-n|,則m=-n; ④若|-m|=|-n|,則m=n.

A. ①② B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)正整數(shù)按如下規(guī)律排列:

若正整數(shù)567位于第a行,第b列,則ab的和是( 。

A. 256 B. 239 C. 159 D. 145

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+bx的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是(
A.t≥﹣1
B.﹣1≤t<3
C.﹣1≤t<8
D.3<t<8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校八、九年級部分學(xué)生的睡眠情況,隨機抽取了該校八、九年級部分學(xué)生進(jìn)行調(diào)查,已知抽取的八年級與九年級的學(xué)生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如圖的統(tǒng)計圖表:
睡眠情況分段情況如下

組別

睡眠時間x(小時)

A

4.5≤x<5.5

B

5.5≤x<6.5

C

6.5≤x<7.5

D

7.5≤x<8.5

E

8.5≤x<9.5

根據(jù)圖表提供的信息,回答下列問題:
(Ⅰ)直接寫出統(tǒng)計圖中a的值
(Ⅱ)睡眠時間少于6.5小時為嚴(yán)重睡眠不足,則從該校八、九年級各隨機抽一名學(xué)生,被抽到的這兩位學(xué)生睡眠嚴(yán)重不足的可能性分別有多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是(
A.68°
B.20°
C.28°
D.22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習(xí)冊答案