【題目】某學(xué)校舉行數(shù)學(xué)競賽,需購買兩種獎(jiǎng)品共160件,其中種獎(jiǎng)品的單價(jià)為12元,種獎(jiǎng)品的單價(jià)為8元,且購買種獎(jiǎng)品的數(shù)量不大于種獎(jiǎng)品數(shù)量的3倍,假設(shè)購買種獎(jiǎng)品的數(shù)量為件.
(1)根據(jù)題意填空:
購買種獎(jiǎng)品的費(fèi)用為___(元);
購買種獎(jiǎng)品的費(fèi)用為___(元);
(2)若購買兩種獎(jiǎng)品所需的總費(fèi)用為元,試求與的函數(shù)關(guān)系式,并求出的取值范圍;
(3)問兩種獎(jiǎng)品各購買多少件時(shí)所需的總費(fèi)用最少,并求出最少費(fèi)用.
【答案】(1),;(2),;(3)購買種獎(jiǎng)品40件,種獎(jiǎng)品120件時(shí),所需費(fèi)用最少,最少費(fèi)用為1440元.
【解析】
(1)根據(jù)總費(fèi)用=單價(jià)×數(shù)量填空;
(2)根據(jù)題意可以寫出y與x的函數(shù)關(guān)系式,根據(jù)題意可以列出相應(yīng)的不等式,求出x的取值范圍;
(3)根據(jù)一次函數(shù)的性質(zhì)即可解答本題.
解:(1)根據(jù)題意填空:
購買種獎(jiǎng)品的費(fèi)用為 (元);
購買種獎(jiǎng)品的費(fèi)用為(元);
(2)根據(jù)題意得,
∴
,解得:
由題意得:
∴;
(3)∵
∴隨的增大而增大
∵
∴當(dāng)時(shí),(元)
∴當(dāng)購買種獎(jiǎng)品40件,種獎(jiǎng)品120件時(shí),所需費(fèi)用最少,最少費(fèi)用為1440元 .
故答案為:(1),;(2),;(3)購買種獎(jiǎng)品40件,種獎(jiǎng)品120件時(shí),所需費(fèi)用最少,最少費(fèi)用為1440元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是BC上一點(diǎn),DE∥AB,交AC于點(diǎn)E,DF∥AC,交AB點(diǎn)F.
(1)直接寫出圖中與∠BAC構(gòu)成的同旁內(nèi)角.
(2)請說明∠A與∠EDF相等的理由.
(3)若∠BDE +∠CDF=234°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中休息了-段時(shí)間后,仍按原速行駛他距乙地的距離與時(shí)間的關(guān)系如圖中折線所示,小李騎摩托車勻速從乙地到甲地,比小張晚出發(fā)一段時(shí)間,他距乙地的距離與時(shí)間的關(guān)系如圖中線段AB所示,
(1)小李到達(dá)甲地后,再經(jīng)過 小時(shí)小張到達(dá)乙地;小張騎自行車的速度是 千米/小時(shí);
(2)請你寫出小李距乙地的距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系(不要求寫出定義域);
(3)若小李想在小張休息期間(第4小時(shí)和第5小時(shí)不算小張休息)與他相遇,則他出發(fā)的時(shí)間x應(yīng)在什么范圍?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)方法解下列方程:
(1)(3x+1)2﹣9=0
(2)x2+4x﹣1=0
(3)3x2﹣2=4x
(4)(y+2)2=1+2y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:數(shù)學(xué)課上,吳老師在求代數(shù)式x2﹣4x+5的最小值時(shí),利用公式a2±2ab+b2=(a±b)2,對式子作如下變形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,
因?yàn)椋?/span>x﹣2)2≥0,
所以(x﹣2)2+1≥1,
當(dāng)x=2時(shí),(x﹣2)2+1=1,
因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值為1.
通過閱讀,解下列問題:
(1)代數(shù)式x2+6x+12的最小值為 ;
(2)求代數(shù)式﹣x2+2x+9的最大或最小值;
(3)試比較代數(shù)式3x2﹣2x與2x2+3x﹣7的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并回答問題.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移項(xiàng)得:x2+x=﹣,第二步
兩邊同時(shí)加上()2,得x2+x+( )2=﹣+()2,第三步
整理得:(x+)2=直接開方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解題過程是否有錯(cuò)誤?若有,說明在第幾步,指明產(chǎn)生錯(cuò)誤的原因,寫出正確的過程;若沒有,請說明上述解題過程所用的方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P是射線AC上任意一點(diǎn) (不與A. D. C三點(diǎn)重合),過點(diǎn)P作PQ⊥AB,垂足為Q,交直線BD于E.
(1)如圖①,當(dāng)點(diǎn)P在線段AC上時(shí),說明∠PDE=∠PED.
(2)作∠CPQ的角平分線交直線AB于點(diǎn)F,則PF與BD有怎樣的位置關(guān)系?畫出圖形并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,而<2于是可用來表示的小數(shù)部分.請解答下列問題:
(1)的整數(shù)部分是_______,小數(shù)部分是_________;
(2)如果的小數(shù)部分為的整數(shù)部分為求的值;
(3)已知:其中是整數(shù),且求的平方根。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com