精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,E為BC上一點,CE=5,F為DE的中點.若△CEF的周長為18,則OF的長為

【答案】
【解析】解:∵CE=5,△CEF的周長為18, ∴CF+EF=18﹣5=13.
∵F為DE的中點,
∴DF=EF.
∵∠BCD=90°,
∴CF= DE,
∴EF=CF= DE=6.5,
∴DE=2EF=13,
∴CD= = =12.
∵四邊形ABCD是正方形,
∴BC=CD=12,O為BD的中點,
∴OF是△BDE的中位線,
∴OF= (BC﹣CE)= (12﹣5)=
故答案為:
先根據直角三角形的性質求出DE的長,再由勾股定理得出CD的長,進而可得出BE的長,由三角形中位線定理即可得出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,今年2月20日舉行了襄陽市首屆中小學生經典誦讀大賽決賽.某中學為了選拔優(yōu)秀學生參加,廣泛開展校級“經典誦讀”比賽活動,比賽成績評定為A,B,C,D,E五個等級,該校七(1)班全體學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據圖中信息,解答下列問題:

(1)該校七(1)班共有名學生;扇形統(tǒng)計圖中C等級所對應扇形的圓心角等于度;
(2)補全條形統(tǒng)計圖;
(3)若A等級的4名學生中有2名男生2名女生,現從中任意選取2名參加學校培訓班,請用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線y= x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y= x2+bx+c經過點B,點C的橫坐標為4.

(1)請直接寫出拋物線的解析式;
(2)如圖2,點D在拋物線上,DE∥y軸交直線AB于點E,且四邊形DFEG為矩形,設點D的橫坐標為x(0<x<4),矩形DFEG的周長為l,求l與x的函數關系式以及l(fā)的最大值;

(3)將△AOB繞平面內某點M旋轉90°或180°,得到△A1O1B1 , 點A、O、B的對應點分別是點A1、O1、B1 . 若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E是AD上的一點,且AE= AD,對角線AC,BD交于點O,EC交BD于F,BE交AC于G,如果平行四邊形ABCD的面積為S,那么,△GEF的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD為中線.
(1)比較∠BAD和∠DAC的大小.
(2)求sin∠BAD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts.

(1)若△AMP的面積為y,寫出y與t的函數關系式(寫出自變量t的取值范圍);
(2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;
(3)t為何值時,以C,P,Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x﹣2交x軸于點A,交y軸于點B,拋物線y=ax2+bx+c的頂點為A,且經過點B.
(1)求該拋物線的解析式;
(2)若點C(m,﹣ )在拋物線上,求m的值.
(3)根據圖象直接寫出一次函數值大于二次函數值時x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,C為 的中點,若AB=2,則圖中陰影部分的面積是(
A.
B. +
C.
D. +

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,頂點為(3,4)的拋物線交y軸于A點,交x軸于B、C兩點(點B在點C的左側),已知A點坐標為(0,﹣5).

(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有什么位置關系,并給出證明;
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案