【題目】我們知道:任何有理數(shù)的平方都是一個非負數(shù),即對于任何有理數(shù)a,都有a2≥0成立,所以,當a=0時,a2有最小值0.
(應(yīng)用):(1)代數(shù)式(x-1)2有最小值時,x=___1;
(2)代數(shù)式m2+3的最小值是____3;
(探究):求代數(shù)式n2+4n+9的最小值,小明是這樣做的:
n2+4n+9
=n2+4n+4+5
=(n+2)2+5
∴當n=-2時,代數(shù)式n2+4n+9有最小值,最小值為5.
請你參照小明的方法,求代數(shù)式a2-6a-3的最小值,并求此時a的值.
(拓展):(3)代數(shù)式m2+n2-8m+2n+17=0,求m+n的值.
(4)若y=-4t2+12t+6,直接寫出y的取值范圍.
【答案】(1)1;(2)3;(3)3;(4)y≤15.
【解析】
(1)由(x-1)2≥0可得x=1時,取得最小值0;
(2)由m2≥0知m2+3≥3可得答案;
(3)將方程變形為(m-4)2+(n+1)2=0,由非負數(shù)性質(zhì)求得m、n的值即可得;
(4)由y=-4t2+12t+6=-4(t-)2+15知-4(t-)2+15≤15,從而得出答案.
(1)代數(shù)式(x-1)2有最小值時,x=1,
故答案為:1;
(2)代數(shù)式m2+3的最小值是在m=0時,最小值為3,
故答案為:3.
(3)∵m2+n2-8m+2n+17=0,
∴(m-4)2+(n+1)2=0,
則m=4、n=-1,
∴m+n=3;
(4)y=-4t2+12t+6
=-4(t2-3t)+6
=-4(t2-3t+-)+6
=-4(t-)2+15,
∵(t-)2≥0,
∴-4(t-)2≤0,
則-4(t-)2+15≤15,即y≤15.
科目:初中數(shù)學 來源: 題型:
【題目】某校進行校園美化工程招標時,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要60天,如果由甲隊先做20天,剩下的工程由甲、乙合作24天完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需要支付工程款3.5萬元,乙隊施工一天需要支付工程款2萬元:如果規(guī)定在70天內(nèi)完成這項工作,是由甲、乙兩隊單獨完成省錢?還是由甲乙合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是(____)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于點D,DE⊥AD交AB于點E,M為AE的中點,BF⊥BC交CM的延長線于點F,BD=4,CD=3.下列結(jié)論:①∠AED=∠ADC;② ;③ACBE=12;④3BF=4AC;其中正確結(jié)論的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②4a+b+c=0;③a﹣b+c<0;④拋物線的頂點坐標為(2,b);⑤當x<2時,y隨x增大而增大.其中結(jié)論正確的是( 。
A.①②③B.①②④C.①④⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在海面上生成了一股強臺風,臺風中心(記為點M)位于濱海市(記作點A)的南偏西15°,距離為 千米,且位于臨海市(記作點B)正西方向千米處.臺風中心正以72千米/時的速度沿北偏東60°的方向移動(假設(shè)臺風在移動過程中的風力保持不變),距離臺風中心60千米的圓形區(qū)域內(nèi)均會受到此次強臺風的侵襲.
(1)濱海市、臨海市是否會受到此次臺風的侵襲?請說明理由.
(2)若受到此次臺風侵襲,該城市受到臺風侵襲的持續(xù)時間有多少小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com