【題目】如圖,在四邊形ABCD中,AD//BC, ,BC=4,DC=3,AD=6.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向,在射線DA上以每秒2兩個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)的面積為,直接寫出與之間的函數(shù)關(guān)系式是____________(不寫取值范圍).
(2)當(dāng)B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),求出此時(shí)的值.
(3)當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2OA=OB時(shí),直接寫出=_____________.
(4)是否存在時(shí)刻,使得若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1);(2), ;(3);(4)
【解析】試題分析:
(1)由題意可得BQ=BC-CQ=4-t,點(diǎn)P到BC的距離=CD=3,由此結(jié)合三角形的面積公式即可得到S與t之間的函數(shù)關(guān)系式;
(2)過點(diǎn)P作PH⊥BC于點(diǎn)H,結(jié)合勾股定理和已知條件把BP2、BQ2、PQ2用含“t”的代數(shù)式表達(dá)出來,然后分BP=BQ、BP=PQ、BQ=PQ三種情況列出方程,解方程得到對(duì)應(yīng)的t的值,再結(jié)合題中的條件檢驗(yàn)即可得到符合要求的t的值;
(3)如圖2,過點(diǎn)P作PM⊥BC交CB的延長(zhǎng)線于點(diǎn)M,易證得四邊形PMCD是矩形,由此可得PM=CD=3,CM=PD=2t,結(jié)合AD=6,BC=4,可得PA=2t-6,BQ=4-t,MQ=CM-CQ=t,由AD∥BC可得△OAP∽△OBQ,結(jié)合2OA=OB即可求得t的值,從而可由tan∠BQP=求得其值;
(4)如圖3,過點(diǎn)D作DM∥PQ交BC的延長(zhǎng)線于點(diǎn)M,則當(dāng)∠BDM=90°時(shí),PQ⊥BD,即當(dāng)BM2=DM2+BD2時(shí),PQ⊥BD,由此結(jié)合已知條件把DM2、BM2和BD2用含“t”的式子表達(dá)出來,列出方程就可得解得t的值.
試題解析:
(1)由題意可得BQ=BC-CQ=4-t,點(diǎn)P到BC的距離=CD=3,
∴S△PBQ=BQ×3=;
(2)如下圖,過點(diǎn)P作PH⊥BC于點(diǎn)H,
∴∠PHB=∠PHQ=90°,
∵∠C=90°,AD∥BC,
∴∠CDP=90°,
∴四邊形PHCD是矩形,
∴PH=CD=3,HC=PD=2t,
∵CQ=t,BC=4,
∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,
∴BQ2=,BP2= ,PQ2=,
由BQ2=BP2可得: ,解得:無解;
由BQ2=PQ2可得: ,解得: ;
由BP2= PQ2可得: ,解得: 或,
∵當(dāng)時(shí),BQ=4-4=0,不符合題意,
∴綜上所述, 或;
(3)如圖2,過點(diǎn)P作PM⊥BC交CB的延長(zhǎng)線于點(diǎn)M,
∴∠PMC=∠C=90°,
∵AD∥BC,
∴∠D=90°,△OAP∽△OBQ,
∴四邊形PMCD是矩形, ,
∴PM=CD=3,CM=PD=2t,
∵AD=6,BC=4,CQ=t,
∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,
∴,解得: ,
∴MQ= ,
又∵PM=3,∠PMQ=90°,
∴tan∠BPQ=;
(4)如圖3,過點(diǎn)D作DM∥PQ交BC的延長(zhǎng)線于點(diǎn)M,則當(dāng)∠BDM=90°時(shí),PQ⊥BD,即當(dāng)BM2=DM2+BD2時(shí),PQ⊥BD,
∵AD∥BC,DM∥PQ,
∴四邊形PQMD是平行四邊形,
∴QM=PD=2t,
∵QC=t,
∴CM=QM-QC=t,
∵∠BCD=∠MCD=90°,
∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,
∵BM2=(BC+CM)2=(4+t)2,
∴由BM2=BD2+DM2可得: ,解得: ,
∴當(dāng)時(shí),∠BDM=90°,
即當(dāng)時(shí),PQ⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,,直線經(jīng)過點(diǎn),且于,于.
(1)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖1的位置時(shí),
①求證:△ADC≌△CEB.
②求證:DE=AD+BE.
(2)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),判斷和的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
解題思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,如圖乙所示,連接PP′.
(1)△P′PB是 三角形,△PP′A是 三角形,∠BPC= °;
(2)利用△BPC可以求出△ABC的邊長(zhǎng)為 .
如圖丙,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1;
(3)求∠BPC度數(shù)的大。
(4)求正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全解題過程.
已知:如圖,O是直線AB上的一點(diǎn),∠COD=90°,OE平分∠BOC.若∠AOC=60°,求∠DOE數(shù).
解:∵O是直線AB上的一點(diǎn),(已知)
∴∠BOC=180°﹣∠AOC.(_________)
∵∠AOC=60°,(已知)
∴∠BOC=120°.(_________)
∵OE平分∠BOC,(已知)
∴∠COE=∠BOC,(_________)
∴∠COE=_____°.
∵∠DOE=∠COD﹣∠COE,且∠COD=90°,
∴∠DOE=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,O是AB的中點(diǎn),連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E,連接AE、DB.
(1)求證:△AOD≌△BOE;
(2)若DC=DE,判斷四邊形AEBD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李叔叔在“中央山水”買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,這套住宅的建筑平面(由四個(gè)長(zhǎng)方形組成)如圖所示(圖中長(zhǎng)度單位:米),請(qǐng)解答下問題:
(1)用式子表示這所住宅的總面積;
(2)若鋪1平方米地磚平均費(fèi)用120元,求當(dāng)x=6時(shí),這套住宅鋪地磚總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·衡陽中考)如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(-,0),B(,0),C(0,3).
(1)求△ABC內(nèi)切圓⊙D的半徑;
(2)過點(diǎn)E(0,-1)的直線與⊙D相切于點(diǎn)F(點(diǎn)F在第一象限),求直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,適宜采用抽樣調(diào)查方式的是( )
A.調(diào)查某航空公司飛行員視力的達(dá)標(biāo)率
B.調(diào)查乘坐飛機(jī)的旅客是否攜帶了違禁物品
C.調(diào)查某品牌圓珠筆芯的使用壽命
D.調(diào)查你組6名同學(xué)對(duì)太原市境總面積的知曉情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了做好大課間活動(dòng),計(jì)劃用400元購(gòu)買10件體育用品,備選體育用品及單價(jià)如下表(單位:元)
備選體育用品 | 籃球 | 排球 | 羽毛球拍 |
單價(jià)(元) | 50 | 40 | 25 |
(1)若400元全部用來購(gòu)買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購(gòu)買多少件?
(2)若400元全部用來購(gòu)買籃球、排球和羽毛球拍三種共10件,能實(shí)現(xiàn)嗎?(若能實(shí)現(xiàn)直接寫出一種答案即可,若不能請(qǐng)說明理由.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com