【題目】三角形兩邊長(zhǎng)分別是和,第三邊的長(zhǎng)是一元二次方程的一個(gè)實(shí)數(shù)根,則此三角形的外接圓半徑為________.
【答案】或
【解析】
先解方程,根據(jù)三角形的三邊關(guān)系可知,方程的兩個(gè)解都能和已知的兩邊構(gòu)建成新的三角形,因此求此三角形的外接圓半徑時(shí),有兩種情況:第一種情況:三邊分別為6、8、10,是直角三角形,所以其斜邊就是外接圓的直徑,第二種情況:三邊分別為6、6、8,等腰三角形,其外接圓的圓心是任意兩邊垂直平分線(xiàn)的交點(diǎn),確定其圓心,利用勾股定理列方程可求其半徑.
x216x+60=0,
(x10)(x6)=0,
x=10或6,
當(dāng)?shù)谌厼?/span>10時(shí),因?yàn)?/span>
∴此三角形是直角三角形,如圖1,
此三角形的外接圓的直徑為最大邊10,
則此三角形的外接圓半徑為5,
當(dāng)?shù)谌厼?/span>6時(shí),如圖2,
過(guò)A作AD⊥BC,垂足為D,作AC的垂直平分線(xiàn)EF,交AC于E,交AD于F,則AF=FC,
∵AB=AC=6,
∴
∴AD是BC的垂直平分線(xiàn),
∴F是△ABC外接圓的圓心,FC為外接圓的半徑,
由勾股定理得:
設(shè)FC=x,則AF=x,
由勾股定理得:
x=,
綜上所述,則此三角形的外接圓半徑為5或.
故答案為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線(xiàn)L1經(jīng)過(guò)點(diǎn)(0,2),L2經(jīng)過(guò)點(diǎn)(2,1),且L1與L2關(guān)于x軸對(duì)稱(chēng),則L1與L2的交點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在寧波慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖。
(1)這50名同學(xué)捐款的眾數(shù)為___元,中位數(shù)為___元;
(2)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤(pán),取名為“開(kāi)心大轉(zhuǎn)盤(pán)”,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎(jiǎng)勵(lì)3元;若指針指向字母“C”,則獎(jiǎng)勵(lì)1元.一天,前來(lái)尋開(kāi)心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),并規(guī)定顧客消費(fèi)元以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅、黃或綠色區(qū)域,顧客就可以分別獲得元,元、元的購(gòu)物券(轉(zhuǎn)盤(pán)被等分成個(gè)扇形).
顧客張吉祥消費(fèi)元,他獲得購(gòu)物券的概率是多少?
他得到元,元、元購(gòu)物券的概率分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC≤BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、點(diǎn)F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在BA的延長(zhǎng)線(xiàn)上,CA=AO,點(diǎn)D在⊙O上,∠ABD=30°.
⑴求證:CD是⊙O的切線(xiàn);
⑵若點(diǎn)P在直線(xiàn)AB上,⊙P與⊙O外切于點(diǎn)B,與直線(xiàn)CD相切于點(diǎn)E,設(shè)⊙O與⊙P的半徑分別為r與R,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2015年投入教育經(jīng)費(fèi)2900萬(wàn)元,2017年投入教育經(jīng)費(fèi)3509萬(wàn)元.
(1)求2015年至2017年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國(guó)民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國(guó)民生產(chǎn)總值的情況,該地區(qū)到2019年需投入教育經(jīng)費(fèi)4250萬(wàn)元.如果按(1)中教育經(jīng)費(fèi)投入的增長(zhǎng)率,到2019年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬(wàn)元?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線(xiàn)y=kx+b(k>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則Bn的坐標(biāo)是( 。
A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)
C.(2n﹣1,2n﹣1)D.(2n﹣1,n)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com