【題目】若A(-3,y1)、B(-1,y2)、C(1,y3)三點都在反比例函數(shù)y=(k>0)的圖象上,則y1、y2、y3的大小關系是( )
A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3
科目:初中數(shù)學 來源: 題型:
【題目】某文具商店銷售學習用品,已知某品牌鋼筆的進價是20元,銷售過程發(fā)現(xiàn),每月銷量y支與銷售單價x元(x為正整數(shù))之間滿足一次函數(shù)關系,且每支鋼筆的售價不低于進價,也不高于35元,下表是y與x之間的對應數(shù)據(jù):
銷售單價x(元) | … | 22 | 24 | 30 | … |
月銷量y(只) | … | 92 | 84 | 60 | … |
(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍.
(2)每支鋼筆的售價定為多少元時,月銷售利潤恰為600元?
(3)每支鋼筆的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,ABCD的邊AB在x軸上,頂點D在y軸的正半軸上,點C在第一象限.將△AOD沿y軸翻折,使點A落在x軸上的點E處,點B恰好為OE的中點,DE與BC交于點F.若y=(k≠0)圖象經過點C,且S△BEF=,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】建立模型:如圖1,已知△ABC,AC=BC,∠C=90°,頂點C在直線l上.
實踐操作:過點A作AD⊥l于點D,過點B作BE⊥l于點E,求證:△CAD≌△BCE.
模型應用:(1)如圖2,在直角坐標系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉45°得到l2.求l2的函數(shù)表達式.
(2)如圖3,在直角坐標系中,點B(8,6),作BA⊥y軸于點A,作BC⊥x軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內.問點A、P、Q能否構成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過A(﹣1,0),B(4,0),C(0,2)三點.
(1)求該二次函數(shù)的解析式;
(2)設點D是在x軸上方的二次函數(shù)圖象上的點,且△DAB的面積為5,求出所有滿足條件的點D的坐標;
(3)能否在拋物線上找點P,使∠APB=90°?若能,請直接寫出所有滿足條件的點P;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經過(﹣1,0)(3,0)兩點,給出的下列6個結論:
①ab<0;
②方程ax2+bx+c=0的根為x1=﹣1,x2=3;
③4a+2b+c<0;
④當x>1時,y隨x值的增大而增大;
⑤當y>0時,﹣1<x<3;
⑥3a+2c<0.
其中不正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列四個條件:
①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.
從上述四個條件中,選取兩個條件,不能判定△ABC是等腰三角形的是:( )
A. ①②B. ①③C. ③④D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點C作CF⊥AB于點F,交BD于點G,過C作CE∥BD交AB的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)求證:CG=BG;
(3)若∠DBA=30°,CG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間甲乙兩商場搞促銷活動,甲商場的方案是:在一個不透明的箱子里放4個完全相同的小球,球上分別標“0元”“20元”“30元”“50元”,顧客每消費滿300元就可從箱子里不放回地摸出2個球,根據(jù)兩個小球所標金額之和可獲相應價格的禮品;乙商場的方案是:在一個不透明的箱子里放2個完全相同的小球,球上分別標“5元”“30元”,顧客每消費滿100元,就可從箱子里有放回地摸出1個球,根據(jù)小球所標金額可獲相應價格的禮品.某顧客準備消費300元.
(1)請用畫樹狀圖或列表法,求出該顧客在甲商場獲得禮品的總價值不低于50元的概率;
(2)判斷該顧客去哪個商場消費使獲得禮品的總價值不低于50元機會更大?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com