【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)A(﹣1,0),B(4,0),C(0,2)三點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D是在x軸上方的二次函數(shù)圖象上的點(diǎn),且△DAB的面積為5,求出所有滿(mǎn)足條件的點(diǎn)D的坐標(biāo);
(3)能否在拋物線(xiàn)上找點(diǎn)P,使∠APB=90°?若能,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P;若不能,請(qǐng)說(shuō)明理由.
【答案】(1);(2)點(diǎn)D的坐標(biāo)為(0,2)或(3,2);(3)能,滿(mǎn)足條件的點(diǎn)P的坐標(biāo)為(0,2)或(3,2).
【解析】
(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D的縱坐標(biāo)為m(m>0),根據(jù)三角形的面積公式結(jié)合△DAB的面積為5,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)D的坐標(biāo);
(3)假設(shè)成立,等點(diǎn)P與點(diǎn)C重合時(shí),可利用勾股定理求出AP、BP的長(zhǎng)度,由AP2+BP2=AB2可得出此時(shí)∠APB=90°,再利用二次函數(shù)圖象的對(duì)稱(chēng)性即可找出點(diǎn)P的另一坐標(biāo),此題得解.
解:(1)∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)A(﹣1,0)、B(4,0)、C(0,2)三點(diǎn),
∴,解得:,
∴該二次函數(shù)的解析式為.
(2)設(shè)點(diǎn)D的縱坐標(biāo)為m(m>0),
則,
∴m=2.
當(dāng)y=2時(shí),有,
解得:x1=0,x2=3,
∴滿(mǎn)足條件的點(diǎn)D的坐標(biāo)為(0,2)或(3,2).
(3)假設(shè)能,當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),
有,
∵,即AP2+BP2=AB2,
∴∠APB=90°,
∴假設(shè)成立,點(diǎn)P的坐標(biāo)為(0,2).
由對(duì)稱(chēng)性可知:當(dāng)點(diǎn)P的坐標(biāo)為(3,2)時(shí),∠APB=90°.
故滿(mǎn)足條件的點(diǎn)P的坐標(biāo)為(0,2)或(3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnCn均為等腰直角三角形,且∠C1=∠C2=∠C3=…=∠Cn=90°,點(diǎn)A1,A2,A3,…,An和點(diǎn)B1,B2,B3,…,Bn分別在正比例函數(shù)y=x和y=﹣x的圖象上,且點(diǎn)A1,A2,A3,…,An的橫坐標(biāo)分別為1,2,3…n,線(xiàn)段A1B1,A2B2,A3B3,…,AnBn均與y軸平行.按照?qǐng)D中所反映的規(guī)律,則△AnBnCn的頂點(diǎn)Cn的坐標(biāo)是____.(其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,中,,,為上一動(dòng)點(diǎn),且,與的延長(zhǎng)線(xiàn)交于點(diǎn),連接.
(1)①求證:;
②若,當(dāng)時(shí),求的長(zhǎng);
(2)如圖2,當(dāng)時(shí),求證:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O.E,F(xiàn)是AC上的兩點(diǎn),并且AE=CF,連接DE,BF.
(1)求證:△DOE≌△BOF;
(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x軸上,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△RtA'OB',其中點(diǎn)B'落在反比例函數(shù)y=﹣的圖象上,OA'交反比例函數(shù)y=的圖象于點(diǎn)C,且OC=2CA',則k的值為( 。
A. 4 B. C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A(-3,y1)、B(-1,y2)、C(1,y3)三點(diǎn)都在反比例函數(shù)y=(k>0)的圖象上,則y1、y2、y3的大小關(guān)系是( )
A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師從學(xué)校出發(fā),到距學(xué)校的某商場(chǎng)去給學(xué)生買(mǎi)獎(jiǎng)品,他先步行了后,換騎上了共享單車(chē),到達(dá)商場(chǎng)時(shí),全程總共剛好花了.已知王老師騎共享單車(chē)的平均速度是步行速度的3倍(轉(zhuǎn)換出行方式時(shí),所需時(shí)間忽略不計(jì)).
(1)求王老師步行和騎共享單車(chē)的平均速度分別為多少?
(2)買(mǎi)完獎(jiǎng)品后,王老師原路返回,為按時(shí)上班,路上所花時(shí)間最多只剩10分鐘,若王老師仍采取先步行,后換騎共享單車(chē)的方式返回,問(wèn):他最多可步行多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的邊長(zhǎng)為2,點(diǎn)A在第一象限,點(diǎn)C在x軸正半軸上,∠AOC=60°,若將菱形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線(xiàn).
(2)如圖②,當(dāng)∠ABC=90°時(shí),線(xiàn)段DE與BC有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com