【題目】某電視機(jī)廠要印制產(chǎn)品宜傳材料甲印刷廠提出:每份材料收1元印制費(fèi),另收1500元制版費(fèi);乙廠提出:每份材料收2.5元印制費(fèi),不收制版費(fèi).
(1)分別寫(xiě)出兩廠的收費(fèi)元與印制數(shù)量 (份)之間的關(guān)系式
(2)在同一直角坐標(biāo)系內(nèi)畫(huà)出它們的圖象;
(3)根據(jù)圖像回答下列問(wèn)題:
①印制800份宣傳材料時(shí),選擇哪家印刷廠比較合算?
②電視機(jī)廠擬拿出3000元用于印制宣傳材料,找哪家印刷廠印制宣傳材料能多一些?
【答案】(1)甲:;乙:;(2)詳見(jiàn)解析;(3)①印制800份材料時(shí),選擇乙廠合算;②付出3000元印刷費(fèi)時(shí),找甲廠印刷的宣傳材料多一些
【解析】
(1)根據(jù)甲印刷廠和乙印刷廠的收費(fèi),可將兩個(gè)廠的收費(fèi)y(元)與印刷數(shù)量x(套)之間的函數(shù)關(guān)系式表示出來(lái);
(2)根據(jù)(1)的函數(shù)圖形,即可畫(huà)出函數(shù)圖像;
(3)①根據(jù)y與x之間的函數(shù)關(guān)系式,將x=800分別代入函數(shù)解析式,求出y的值即可;
②根據(jù)y與x之間的函數(shù)關(guān)系式,將y=3000分別代入函數(shù)解析式,求出x的值即可;
解:(1)∵甲印刷廠提出,每份材料收1元印制費(fèi),另收1500元制版費(fèi);
∴甲廠的收費(fèi)函數(shù)表達(dá)式為:,
∵乙廠提出,每份材料收2.5元印制費(fèi),不收制版費(fèi).
∴乙廠的收費(fèi)函數(shù)表達(dá)式為:;
(2)如圖所示:
(3)①將x=800分別代入函數(shù)解析式,
y甲=x+1500=800+1500=2300,
y乙=2.5x=2.5×800=2000,
∴印制800份材料時(shí),選擇乙廠合算;
②將y=3000分別代入函數(shù)解析式,
y甲=x+1500=3000,
解得:x=1500份,
y乙=2.5x=3000,
解得:x=1200份,
∴3000元時(shí),甲印制的宣傳材料多一些.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠BOC,OF平分∠AOC.
(1)若∠AOB=90°,∠AOC=30°,求∠EOF的度數(shù);
(2)若∠AOB=,求∠EOF的度數(shù)(寫(xiě)出求解過(guò)程);
(3)若將條件中“OE平分∠BOC,OF平分∠AOC.平分”改為“∠EOB=∠COB,∠COF=∠COA”,且∠AOB=,求∠EOF的度數(shù)(寫(xiě)出求解過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
材料:我們知道,如果一個(gè)三角形的三邊長(zhǎng)固定,那么這個(gè)三角形就固定。若給出任意一個(gè)三角形的三邊長(zhǎng),你能求出它的面積嗎?設(shè)一個(gè)三角形的三邊長(zhǎng)分別為,,,我們把它的面積記為,古希臘的幾何學(xué)家海倫(Hcron,約公元50年),在數(shù)學(xué)史上以解決幾何測(cè)量問(wèn)題而聞名,在他的著作《度量》一書(shū)中,給出了一個(gè)通過(guò)三角形的三邊長(zhǎng)來(lái)求面積的海倫公式。我們可以把海倫公式變形為:(其中)
材料2:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆寫(xiě),即.配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最最大(。┲担
例如:求的最小值.
當(dāng)時(shí),,此時(shí)取得最小值,
請(qǐng)你運(yùn)用材料提供的方法,解答以下問(wèn)題:
(1)若三角形的三邊長(zhǎng)分別為,,,求該三角形的面積;
(2)小新手里有一根長(zhǎng)米的鐵絲,他想用這根鐵絲制作一個(gè)三角形模型,要求該三角形的一邊長(zhǎng)為米且面積最大,請(qǐng)你幫助他計(jì)算出這個(gè)三角形另兩邊的邊長(zhǎng),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)和.
(1)求拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點(diǎn)).將圖象M沿直線翻折,得到圖象N.若過(guò)點(diǎn)的直線與圖象M、圖象N都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說(shuō)法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;
④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島自古就是中國(guó)的!2017年5月18日,中國(guó)海警2305,2308,2166,33115艦船隊(duì)在中國(guó)的釣魚(yú)島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚(yú)島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚(yú)島的距離(≈1.414,結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時(shí)就有.給出下列關(guān)于F(n)的說(shuō)法:(1);(2);(3)F(27)=3;(4)若n是一個(gè)整數(shù)的平方,則F(n)=1.其中正確說(shuō)法的有_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com