【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A(3,0),頂點(diǎn)By軸正半軸上,頂點(diǎn)Dx軸負(fù)半軸上,若拋物線y=x25x+c經(jīng)過(guò)點(diǎn)B、C,則菱形ABCD的面積為(

A.15B.20C.25D.30

【答案】B

【解析】

根據(jù)拋物線的解析式結(jié)合拋物線過(guò)點(diǎn)BC,即可得出點(diǎn)C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=5,再根據(jù)勾股定理可求出OB的長(zhǎng)度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.

解:拋物線的對(duì)稱軸為,

∵拋物線y=-x2-5x+c經(jīng)過(guò)點(diǎn)BC,且點(diǎn)By軸上,BCx軸,
∴點(diǎn)C的橫坐標(biāo)為-5
∵四邊形ABCD為菱形,
AB=BC=AD=5,
∴點(diǎn)D的坐標(biāo)為(-2,0),OA=3
RtABC中,AB=5,OA=3,

OB=

S菱形ABCD=ADOB=5×4=20
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=﹣x2+2x+3x軸于點(diǎn)A、B,其中點(diǎn)A在點(diǎn)B的左邊,交y軸于點(diǎn)C,點(diǎn)P為拋物線上位于x軸上方的一點(diǎn).

1)求A、B、C三點(diǎn)的坐標(biāo);

2)若PAB的面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題情境)

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

(探究展示)

(1)證明:AM=AD+MC;

(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

(拓展延伸)

(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)半徑相等的直角扇形的圓心分別在對(duì)方的圓弧上,半徑AE、CF交于點(diǎn)G,半徑BECD交于點(diǎn)H,且點(diǎn)C是弧AB的中點(diǎn),若扇形的半徑為,則圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD.

1)作∠B的平分線交ADE點(diǎn)。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫(xiě)作法);

2)若ABCD的周長(zhǎng)為10,CD=2,求DE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有紅、黃兩個(gè)盒子,紅盒子中藏有三張分別標(biāo)有數(shù)字,,1的卡片,黃盒子中藏有三張分別標(biāo)有數(shù)字1,32的卡片,卡片外形相同.現(xiàn)甲從紅盒子中取出一張卡片,乙從黃盒子中取出一張卡片,并將它們的數(shù)字分別記為ab

(1)請(qǐng)你用樹(shù)形圖或列表法列出所有可能的結(jié)果.

(2)現(xiàn)制定這樣一個(gè)游戲規(guī)則:若所選出的a,b能使得二次函數(shù)y=ax2+bx+1的圖像與x軸有兩個(gè)不同的交點(diǎn),則稱甲獲勝;否則稱乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)你用概率知識(shí)解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)分別為,拋物線的頂點(diǎn)在線段上運(yùn)動(dòng),與軸交于兩點(diǎn)(的左側(cè)),若點(diǎn)的橫坐標(biāo)的最小值為0,則點(diǎn)的橫坐標(biāo)最大值為(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A0,3),B3,4),C2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度).

1)作出ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);

2)作出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的A2B2C2,并直接寫(xiě)出B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,AEBC,AFCD,垂足分別為點(diǎn)E,F,且BEDF

1)如圖1,求證:ABCD是菱形;

2)如圖2,連接BD,交AE于點(diǎn)G,交AF于點(diǎn)H,連接EF、FG,若∠CEF30°,在不添加任何字母及輔助線的情況下,請(qǐng)直接寫(xiě)出圖中面積是BEG面積2倍的所有三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案