【題目】閱讀理解題:

(1)原理:對(duì)于任意兩個(gè)實(shí)數(shù)a、b,

ab0,則ab同號(hào),即:

ab0,則ab異號(hào),即:

(2)對(duì)不等式(x+1)(x2)0來說,把(x+1)(x2)看成兩個(gè)數(shù)ab,所以按照上述原理可知:()(),所以不等式(x+1)(x2)0的求解就轉(zhuǎn)化求解不等式組(I)()

(3)應(yīng)用:解不等式x2x120

【答案】(3)x<﹣3x4

【解析】

x2x120知(x+3)(x4)>0,根據(jù)題意得出①或②,再分別求解可得.

x2x120,

∴(x+3)(x4)>0,

則①或②,

解不等式組①,得:x4,

解不等式組②,得:x<﹣3,

所以原不等式得解集為x<﹣3x4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn),若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,點(diǎn)D,E,F(xiàn)分別在BC,AB,AC邊上.

(1)當(dāng)點(diǎn)D,E,F(xiàn)分別為BC,AB,AC邊的中點(diǎn)時(shí),求證:△BED≌△DFC;
(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若一次函數(shù)y=ax+b的圖象經(jīng)過二、三、四象限,則二次函數(shù)y=ax2+bx的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,延長(zhǎng)BC到點(diǎn)F,連接AF,使∠ABC=2∠CAF.

(1)求證:AF是⊙O的切線;
(2)若AC=4,CE:EB=1:3,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠BAD的角平分線與邊BC交于點(diǎn)E,∠ADC的角平分線交直線AE于點(diǎn)O.

(1)若點(diǎn)O在四邊形ABCD的內(nèi)部,

①如圖1,若AD∥BC,∠B=40°,∠C=70°,則∠DOE= °;

②如圖2,試探索∠B、∠C、∠DOE之間的數(shù)量關(guān)系,并將你的探索過程寫下來.

(2)如圖3,若點(diǎn)O在四邊形ABCD的外部,請(qǐng)你直接寫出∠B、∠C、∠DOE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的函數(shù)圖象反映的過程是:李大爺每天早上都到公園鍛煉,他從家去公園鍛煉一會(huì)兒,又去了菜市場(chǎng)后馬上回家,其中表示時(shí)間,表示李大爺離他家的距離。

(1)李大爺家到公園的距離是多少千米,他在公園銀煉了多少小時(shí);

(2)李大爺從菜市場(chǎng)回家的平均速度;

(3)李大爺從家到菜市場(chǎng)的平均速度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案