【題目】如圖,△ABC中,D是AB邊上一點,⊙O過D、B、C三點,∠DOC=2∠ACD=90°.
(1)求證:直線AC是⊙O的切線;
(2)如果∠ACB=75°,⊙O的半徑為2,求BD的長.
【答案】(1)證明見解析;(2)2.
【解析】
(1)證明OC⊥AC即可.根據(jù)∠DOC是等腰直角三角形可得∠DCO=45°,又∠ACD=45°,所以∠ACO=90°,得證;
(2)如果∠ACB=75°,∠ACD=30°,則∠BCD=30°.作DE⊥BC,把問題轉化到解直角三角形求解,先求求DE,最后求BD得解.
(1)∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.
∵∠DOC=2∠ACD=90°,∴∠ACD=45°.
∴∠ACD+∠OCD=∠OCA=90°
∵點C在圓O上,∴直線AC是圓O的切線.
(2)∵OD=OC=2,∠DOC=90°,∴CD=2.
∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°.
作DE⊥BC于點E,則∠DEC=90°,
∴DE=DCsin30°=.
∵∠B=45°,∴DB=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD⊥AB,交⊙O于C、D兩點,交AB點E、F是弧BD上一點,過點F作一條直線,交CD的延長線于點G,交AB的延長線于點M.連結AF,交CD于點H,GF=GH.
(1)求證:MG是⊙O的切線;
(2)若弧AF=弧CF,求證:HC=AC;
(3)在(2)的條件下,若tanG=,AE=6,求GM的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1為放置在水平桌面l上的臺燈,底座的高AB為5cm,長度均為20cm的連桿BC、CD與AB始終在同一平面上.
(1)轉動連桿BC,CD,使∠BCD成平角,∠ABC=150°,如圖2,求連桿端點D離桌面l的高度DE.
(2)將(1)中的連桿CD再繞點C逆時針旋轉,經(jīng)試驗后發(fā)現(xiàn),如圖3,當∠BCD=150°時臺燈光線最佳.求此時連桿端點D離桌面l的高度比原來降低了多少厘米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結論錯誤的是( 。
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點G,作GD⊥AO于點D,交AC于點E,交⊙O于點F,M是GE的中點,連接CF,CM.
(1)判斷CM與⊙O的位置關系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥,12周后,記錄了兩組患者的生理指標和的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者;
同時記錄了服藥患者在4周、8周、12周后的指標z的改善情況,并繪制成條形統(tǒng)計圖.
根據(jù)以上信息,回答下列問題:
(1)從服藥的50名患者中隨機選出一人,求此人指標的值大于1.7的概率;
(2)設這100名患者中服藥者指標數(shù)據(jù)的方差為,未服藥者指標數(shù)據(jù)的方差為,則 ;(填“>”、“=”或“<” )
(3)對于指標z的改善情況,下列推斷合理的是 .
①服藥4周后,超過一半的患者指標z沒有改善,說明此藥對指標z沒有太大作用;
②在服藥的12周內(nèi),隨著服藥時間的增長,對指標z的改善效果越來越明顯.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解七、八年級學生一分鐘跳繩情況,從這兩個年級隨機抽取名學生進行測試,并對測試成績(一分鐘跳繩次數(shù))進行整理、描述和分析,下面給出了部分信息:
七年級學生一分鐘跳繩成績頻數(shù)分布直方圖
七、八年級學生一分鐘跳繩成績分析表
七年級學生一分鐘跳繩成績(數(shù)據(jù)分組:)在這一組的是:
根據(jù)以上信息,回答下列問題:
表中 ;
在這次測試中,七年級甲同學的成績次,八年級乙同學的成績,他們的測試成績,在各自年級所抽取的名同學中,排名更靠前的是 (填“甲”或“乙”),理由是 .
該校七年級共有名學生,估計一分鐘跳繩不低于次的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com