【題目】足球世界杯預(yù)選賽實(shí)行主客場的循環(huán)賽,即每兩支球隊(duì)都要在自己的主場和客場踢一場.共舉行比賽場,則參加比賽的球隊(duì)共有________支.

【答案】15

【解析】

設(shè)參加比賽的球隊(duì)共有x支,則每支球隊(duì)都要與余下的(x-1)支球隊(duì)進(jìn)行比賽,又每兩支球隊(duì)都要在自己的主場和客場踢一場,即每兩支球隊(duì)相互之間都要比賽兩場,故這x支球隊(duì)一共需要比賽xx-1)場,而這個(gè)場次又是210場,據(jù)此列出方程.

解:設(shè)參加比賽的球隊(duì)共有x支,每一個(gè)球隊(duì)都與剩余的x-1隊(duì)打球,即共打xx-1)場,

∵每兩支球隊(duì)都要在自己的主場和客場踢一場,即每兩支球隊(duì)相互之間都要比賽兩場,

∴每兩支球隊(duì)相互之間都要比賽兩場,

xx-1=210,

解得:x2-x-210=0,

x-15)(x+14=0

x1=15x2=-14(負(fù)值舍去)

故參加比賽的球隊(duì)共有15支.

故答案為:15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,BDAC邊上的中線.

(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點(diǎn)C作直線CE,使CEBC于點(diǎn)C,交BD的延長線于點(diǎn)E,連接AE;

(2)求證:四邊形ABCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,完成(1~2)題:

數(shù)學(xué)課上,老師出示了一道題:如圖1,將一個(gè)直角三角板的直角邊擺放在直線上,然后以直角頂點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)這個(gè)三角板.若射線平分、探究的數(shù)量關(guān)系,并說明經(jīng)過一段時(shí)間的思考后,同學(xué)們開始了交流:

小明:我根據(jù)老師的敘述畫出圖2,并計(jì)算出當(dāng)時(shí),的度數(shù)是;

小紅:在小明的圖形中,點(diǎn)都在的上方,我發(fā)現(xiàn),在這種情況下,始終在的內(nèi)部.若設(shè)的度數(shù)是,通過計(jì)算,的度數(shù)可以用含的式子表示,得到的數(shù)量關(guān)系是

小華:我除了畫小明的這種圖形,還畫了其余幾種,也分別得出的數(shù)量關(guān)系,從而解決了老師提出的問題.

老師:這些同學(xué)都先畫出圖形,再解決問題,這體現(xiàn)了圖形的直性,但要注意一點(diǎn),在初中階段我們研究的角都是小于的.隨著大家交流的深入,點(diǎn)的位置由上方到直線外,的值由數(shù)字到字母,這體現(xiàn)了從特殊到一般的思想,同學(xué)們再根據(jù)小華所說的進(jìn)行探究,還能歸納出其他的數(shù)學(xué)思想方法!

1 2

1)如圖2,點(diǎn)、都在上方,

①用含的代數(shù)式表示_____________;

②小紅的“始終在的內(nèi)部”的說法是正確的嗎,為什么?

2)根據(jù)小華的敘述,寫出的數(shù)量關(guān)系并說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一系列用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長方形地面.請觀察并解答下列問題:

1)在第n個(gè)圖形中,共有多少塊黑瓷磚(用含n的代數(shù)式表示);

2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,用(1)中的n表示y

3)當(dāng)n12時(shí),求y的值;

4)若黑瓷磚每塊3元,白瓷磚每塊2元,在問題(3)中,試求共需花多少元購買瓷磚.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①必是負(fù)數(shù);②絕對值最小的數(shù)是0;③在數(shù)軸上,原點(diǎn)兩旁的兩個(gè)點(diǎn)表示的數(shù)必互為相反數(shù);④在數(shù)軸上,左邊的點(diǎn)比右邊的點(diǎn)所表示的數(shù)大,其中正確的有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,

(1)求OC的長及的值;

(2)設(shè)直線BC與y軸交于P點(diǎn),當(dāng)點(diǎn)C恰好在OP的垂直平分線上時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在,,.點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng),同時(shí)點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,

秒后, 的面積等于

秒后,的長度等于

運(yùn)動(dòng)過程中,四邊形APQC的面積能否等于?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費(fèi)40萬元,第二次花費(fèi)60萬元,已知第一次采購時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格上漲了500元,第二次采購時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格下降了500元,第二次采購的數(shù)量是第一次采購數(shù)量的兩倍.

1)試問去年每噸大蒜的平均價(jià)格是多少元?

2)該公司可將大蒜加工成蒜粉或蒜片,若單獨(dú)加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨(dú)加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600.為出口需要,所有采購的大蒜必須在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半.為獲得最大利潤,應(yīng)將多少噸大蒜加工成蒜粉?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為等邊△ABC的高,E、F分別為線段ADAC上的動(dòng)點(diǎn),且AECF,當(dāng)BF+CE取得最小值時(shí),∠AFB=(  )

A. 112.5°B. 105°C. 90°D. 82.5°

查看答案和解析>>

同步練習(xí)冊答案