【題目】把拋物線y=ax+bx+c的圖象先向右平移3個單位,再向下平移2個單位,所得的圖象的解析式是y=x-3x+5,則a+b+c=__________。

【答案】4

【解析】本題主要考查了函數(shù)圖象的平移.

因為拋物線y=ax2+bx+c的圖象先向右平移3個單位,再向下平移2個單位,得到圖象的解析式是y=x2-3x+5,所以y=x2-3x+5向左平移3個單位,再向上平移2個單位后,可得拋物線y=ax2+bx+c的圖象,先由y=x2-3x+5的平移求出y=ax2+bx+c的解析式,再求a+b+c=11

解:y=x2-3x+5=x-2+,當y=x2-3x+5向左平移3個單位,再向上平移2個單位后,可得拋物線y=ax2+bx+c的圖象,

y=x-+32++2=x2+3x+7;

∴a+b+c=11

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩家運輸公司規(guī)定每位旅客攜帶行李的費用與所帶行李質(zhì)量之間的關(guān)系圖.

(1)由圖可知,行李質(zhì)量只要不超過______kg,甲公司就可免費攜帶,如果超過了規(guī)定的質(zhì)量,則每超過1 kg要付運費_______元;

(2)解釋圖中點M所表示的實際意義;

(3)若設旅客攜帶的行李質(zhì)量為x(kg),所付的行李費是y(元),請分別寫出y甲與y乙(元)隨x(kg)之間變化的關(guān)系式;

(4)若你準備攜帶45 kg的行李出行,在甲、乙兩家公司中你會選擇哪一家?應付行李費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面

(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);

(2)若這個輸水管道有水部分的水面寬AB=8 cm水面最深地方的高度為2 cm求這個圓形截面的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個求助沒有用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果小明第一題不使用求助,那么小明答對第一道題的概率是  

(2)如果小明將求助留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DABCBC邊上的一點,AD=BD,ADC=80°.

(1)求∠B的度數(shù);

(2)若∠BAC=70°,判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AGCD于點H,若∠C=120°,則∠AHD=( 。

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是關(guān)于的方程(x-2)(x-m)=(p-2)(p-m)的兩個實數(shù)根.

(1)求的值;

(2)若是某直角三角形的兩直角邊的長,問當實數(shù)mp滿足什么條件時,此直角三角形的面積最大?并求出其最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雙十一購物節(jié)即將到來,某商場設計了兩種的促銷方案,并有以下兩種銷售量預期.預期一:第1步,銷售量擴大為原來的a.2步,再擴大為第1步銷售量的b.預期二:第1步,銷售量擴大為原來的倍;第2步,再擴大為第1步銷售量的倍;其中a,b為不相等的正數(shù),請問兩種預期中,哪種銷售量更多?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的重心,,的延長線分別交,,于點,,,的值為________;

如圖的重心.,連接,

,證明:;

的重心,,,當為直角三角形時,請直接寫出,,之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習冊答案