【題目】在精準扶貧政策的扶持下,貧困戶老李今年試種的百香果獲得大豐收,共收獲2 000千克.扶貧小組幫助他將百香果按照品質從高到低分成A,B,C,D,E五個等級,并根據(jù)數(shù)據(jù)繪制了如下的扇形統(tǒng)計圖和頻數(shù)分布表:

請根據(jù)圖表信息解答下列問題:

1__________;__________;__________;

2)求扇形統(tǒng)計圖中“E”所對應的圓心角的度數(shù);

3)為了幫助貧困戶老李銷售百香果,扶貧小組聯(lián)系了甲、乙兩位經(jīng)銷商.他們分別給出如下收購方案:

甲:全部按5/千克收購;

乙:按等級收購:C等級單價為6.5/千克,每提高一個等級單價提高1/千克,剩下的DE兩個等級單價均為2/千克.

請你通過計算,判斷哪個經(jīng)銷商的方案使老李盈利更多.

【答案】1400,340,25;(28%;(3)老李應選擇乙經(jīng)銷商方案盈利更多,理由見解析.

【解析】

1)先結合扇形統(tǒng)計圖和頻數(shù)分布表計算出D等級對應的質量,再利用總質量減去B,C,D,E的質量即可求出A的質量,最后利用B的質量與總質量之比即可求出B所占的百分比;

2)先用E的質量與總質量之比求出E所占的百分比,再乘以360°即可求出“E”所對應的圓心角的度數(shù);

3)分別計算出甲乙兩種方案老李的盈利,然后進行比較即可.

解:(1

故答案為400,340,25;

2=

=64.8(度).

答:扇形統(tǒng)計圖中“E”所對應的圓心角的度數(shù)為64.8°;

3)甲方案:2 000×5=10 000(元).

乙方案:400×6.5500×6.5+1)+400×6.5+2)+340×2360×2=11 150(元).

因為11 15010 000,

所以老李應選擇乙經(jīng)銷商方案盈利更多.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線BD=12cm,AC=16cm,AC,BD相交于點O,若E,F(xiàn)AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為0.5cm/s.

(1)當EF不重合時,四邊形DEBF是平行四邊形嗎?說明理由;

(2)點 E,F(xiàn)AC上運動過程中,以D、E、B、F為頂點的四邊形是否可能為矩形?如能,求出此時的運動時間t的值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小高從家騎車去單位上班,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達工作單位,所用的時間x(分鐘)與離家距離y(千米)的關系如圖所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上班時一致,那么他從單位到家需要的時間是_______分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A0,5), Ba,b),且ab滿足b1

(1)如圖,求線段AB的長;

(2)如圖,直線CDx軸、y軸正半軸分別交于點C,D,∠OCD45°,第四象限的點Pm,n)在直線CD上,且mn=-6,求OP2OC2的值;

(3)如圖,若點D1,0),求∠DAO +∠BAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在課題學習中,老師要求用長為12厘米,寬為8厘米的長方形紙片制作一個無蓋的長方體紙盒.三位同學分別以下列方式在長方形紙片上截去兩角(圖中陰影部分),然后沿虛線折成一個無蓋的長方體紙盒.

甲:如圖1,盒子底面的四邊形ABCD是正方形;

乙:如圖2,盒子底面的四邊形ABCD是正方形;

丙:如圖3,盒子底面的四邊形ABCD是長方形,AB=2AD

將這三位同學所折成的無蓋長方體的容積按從大到小的順序排列,正確的是

A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E為CD上一點,將△BCE沿BE翻折后點C恰好落在AD邊上的點F處,將線段EF繞點F旋轉,使點E落在BE上的點G處,連接CG.

(1)證明:四邊形CEFG是菱形;

(2)若AB=8,BC=10,求四邊形CEFG的面積;

(3)試探究當線段AB與BC滿足什么數(shù)量關系時,BG=CG,請寫出你的探究過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB=8cm,C是線段AB上一點,AC=3.2cm,MAB的中點,NAC的中點.

(1)求線段CM的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與化簡

1)計算:(6m2+4m3+22m24m+1);

2)先化簡,再求值.4xy[x2+5xyy2)﹣2x2+3xyy2],其中:x=﹣1y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質.小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究.

下面是小東的探究過程,請補充完整:

(1)函數(shù)的自變量x的取值范圍是 ;

(2)下表是yx的幾組對應值.

x

-3

-2

-1

1

2

3

4

5

y

3

m

m的值;

(3)如下圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)結合函數(shù)的圖象,寫出該函數(shù)的一條性質: .

查看答案和解析>>

同步練習冊答案