【題目】中,,OA平分BC于點(diǎn)O,以O為圓心,OC長(zhǎng)為半徑作圓交BC于點(diǎn)D

1)如圖1,求證:AB的切線;

2)如圖2,AB相切于點(diǎn)E,連接CEOA于點(diǎn)F

①試判斷線段OACE的關(guān)系,并說(shuō)明理由.

②若,求的值.

【答案】1)見(jiàn)解析;(2)①OA垂直平分CE,理由見(jiàn)解析;②

【解析】

1)過(guò)點(diǎn)OOGAB,垂足為G,利用角平分線的性質(zhì)定理可得OG=OC,即可證明;

2)①利用切線長(zhǎng)定理,證明OE=OC,結(jié)合OE=OC,再利用垂直平分線的判定定理可得結(jié)論;

②根據(jù)求出OFCF,再證明△OCF∽△OAC,求出AC,再證明△BEO∽△BCA,得到,設(shè)BO=x,BE=y,可得關(guān)于xy的二元一次方程組,求解可得BOBE,從而可得結(jié)果.

解:(1)如圖,過(guò)點(diǎn)OOGAB,垂足為G

OA平分BC于點(diǎn)O,

OG=OC

∴點(diǎn)G上,

AB相切;

2)①OA垂直平分CE,理由是:

連接OE,

AB相切于點(diǎn)E,AC相切于點(diǎn)C,

AE=AC,

OE=OC

OA垂直平分CE;

②∵,

FC=2OF,在△OCF中,

,

解得:OF=,則CF=,

由①得:OACE,

則∠OCF+COF=90°,又∠OCF+ACF=90°,

∴∠COF=ACF,而∠CFO=ACO=90°,

∴△OCF∽△OAC,

,即,

解得:AC=6,

AB與圓O切于點(diǎn)E,

∴∠BEO=90°,AC=AE=6,而∠B=B,

∴△BEO∽△BCA,

,設(shè)BO=x,BE=y,

,

可得:,

解得:,即BO=5,BE=4,

tanB==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)的圖像(記為拋物線)與y軸交于點(diǎn)C,與x軸分別交于點(diǎn)A、B,點(diǎn)A、B的橫坐標(biāo)分別記為,且

1)若,且過(guò)點(diǎn),求該二次函數(shù)的表達(dá)式;

2)若關(guān)于x的一元二次方程的判別式.求證:當(dāng)時(shí),二次函數(shù)的圖像與x軸沒(méi)有交點(diǎn).

3)若,點(diǎn)P的坐標(biāo)為,過(guò)點(diǎn)P作直線l垂直于y軸,且拋物線的頂點(diǎn)在直線l上,連接OP、AP、BP,PA的延長(zhǎng)線與拋物線交于點(diǎn)D,若,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,將矩形繞點(diǎn)旋轉(zhuǎn),點(diǎn)、的對(duì)應(yīng)點(diǎn)分別為、、,當(dāng)落在邊的延長(zhǎng)線上時(shí),邊與邊的延長(zhǎng)線交于點(diǎn),聯(lián)結(jié),那么線段的長(zhǎng)度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小云統(tǒng)計(jì)了自己所住小區(qū)51日至30日的廚余垃圾分出量(單位:千克),相關(guān)信息如下:

.小云所住小區(qū)51日至30日的廚余垃圾分出量統(tǒng)計(jì)圖:

.小云所住小區(qū)51日至30日分時(shí)段的廚余垃圾分出量的平均數(shù)如下:

時(shí)段

1日至10

11日至20

21日至30

平均數(shù)

100

170

250

1)該小區(qū)51日至30日的廚余垃圾分出量的平均數(shù)約為 (結(jié)果取整數(shù))

2)已知該小區(qū)4月的廚余垃圾分出量的平均數(shù)為60,則該小區(qū)51日至30日的廚余垃圾分出量的平均數(shù)約為4月的 倍(結(jié)果保留小數(shù)點(diǎn)后一位);

3)記該小區(qū)51日至10日的廚余垃圾分出量的方差為511日至20日的廚余垃圾分出量的方差為521日至30日的廚余垃圾分出量的方差為.直接寫(xiě)出的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,O為對(duì)角線AC的中點(diǎn),過(guò)O的一條直線交AD于點(diǎn)E,交BC于點(diǎn)F

1)求證:;

2)若,的面積為2,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行鋼筆書(shū)法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自九年級(jí),其他同學(xué)均來(lái)自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書(shū)法大賽,請(qǐng)通過(guò)列表或畫(huà)樹(shù)狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,點(diǎn)OAC上,以OA為半徑的OAB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE

1)判斷直線DEO的位置關(guān)系,并說(shuō)明理由;

2)若AC=6BC=8,OA=2,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】縣政府計(jì)劃建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為(單位:),某運(yùn)輸公司承擔(dān)了運(yùn)送土石方的任務(wù).

1)運(yùn)輸公司平均運(yùn)輸速度v(單位:天)與完成運(yùn)輸所需時(shí)間t(單位:天)之間具有怎樣的函數(shù)關(guān)系?

2)這個(gè)運(yùn)輸公司共有80輛卡車(chē),每天可運(yùn)輸土石方為(單位:),公司完成全部運(yùn)輸任務(wù)需要多長(zhǎng)時(shí)間?

3)當(dāng)公司以問(wèn)題(2)中的速度工作了30天后,由于工程進(jìn)度的需要,剩下的運(yùn)輸任務(wù)必須在20天內(nèi)完成,則運(yùn)輸公司至少要增加多少輛卡車(chē)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201812月初開(kāi)始,某地環(huán)保部門(mén)連續(xù)一年對(duì)兩市的空氣質(zhì)量進(jìn)行監(jiān)測(cè),將天的空氣污染指數(shù)(簡(jiǎn)稱(chēng):API)的平均值作為每個(gè)月的空氣污染指數(shù),個(gè)月的空氣污染指數(shù)如下:

整理、描述數(shù)據(jù):

空氣質(zhì)量

按如表整理、描述這兩市空氣污染指數(shù)的數(shù)據(jù):

城市

空氣質(zhì)量為優(yōu)

空氣質(zhì)量為良

空氣質(zhì)量為輕微污染

說(shuō)明:空氣污染指數(shù)時(shí),空氣質(zhì)量為優(yōu);空氣污染指數(shù)時(shí),空氣質(zhì)量為良;空氣污染指數(shù)時(shí),空氣質(zhì)量為輕微污染.

分析數(shù)據(jù):

兩市的空氣污染指數(shù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示;

城市

平均數(shù)

中位數(shù)

眾數(shù)

請(qǐng)將以上兩個(gè)表格補(bǔ)充完整:

得出結(jié)論:可以推斷出 市這一年中環(huán)境狀況比較好,理由_____(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

同步練習(xí)冊(cè)答案