【題目】已知:如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C是點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn),過(guò)點(diǎn)C作y軸平行的射線CD,交直線AB與點(diǎn)D,點(diǎn)P是射線CD上的一個(gè)動(dòng)點(diǎn).
(1)求點(diǎn)A,B的坐標(biāo).
(2)如圖2,將△ACP沿著AP翻折,當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在直線AB上時(shí),求點(diǎn)P的坐標(biāo).
(3)若直線OP與直線AD有交點(diǎn),不妨設(shè)交點(diǎn)為Q(不與點(diǎn)D重合),連接CQ,是否存在點(diǎn)P,使得S△CPQ=2S△DPQ,若存在,請(qǐng)求出對(duì)應(yīng)的點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)A(﹣4,0),B(0,3);(2)P(4,);(3)滿足條件的點(diǎn)Q(12,12)或(,4).
【解析】
令x=0,y=0即可求出A,B坐標(biāo).
因?yàn)辄c(diǎn)C是點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn),求得C坐標(biāo),因?yàn)?/span>CD⊥x軸,所以求得D坐標(biāo),由折疊知,AC'=AC,所以C'D=AD﹣AC',設(shè)PC=a,在Rt△DC'P中通過(guò)勾股定理求得a值,即可求得P點(diǎn)坐標(biāo).
在S△CPQ=2S△DPQ情況下分類討論P點(diǎn)坐標(biāo)即可求解.
解:(1)令x=0,則y=3,
∴B(0,3),
令y=0,則x+3=0,
∴x=﹣4,
∴A(﹣4,0);
(2)∵點(diǎn)C是點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn),
∴C(4,0),
∵CD⊥x軸,
∴x=4時(shí),y=6,∴D(4,6),
∴AC=8,CD=6,AD=10,
由折疊知,AC'=AC=8,
∴C'D=AD﹣AC'=2,
設(shè)PC=a,
∴PC'=a,DP=6﹣a,
在Rt△DC'P中,a2+4=(6﹣a)2,
∴a=,
∴P(4,);
(3)設(shè)P(4,m),
∴CP=m,DP=|m﹣6|,
∵S△CPQ=2S△DPQ,
∴CP=2PD,
∴2|m﹣6|=m,
∴m=4或m=12,
∴P(4,4)或P(4,12),
∵直線AB的解析式為y=x+3①,
當(dāng)P(4,4)時(shí),直線OP的解析式為y=x②,
聯(lián)立①②解得,x=12,y=12,
∴Q(12,12),
當(dāng)P(4,12)時(shí),直線OP解析式為y=3x③,
聯(lián)立①③解得,x=,y=4,
∴Q(,4),
即:滿足條件的點(diǎn)Q(12,12)或(,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,PM、QN分別是AB、AC的垂直平分線,∠BAC=100°那么∠PAQ等于( )
A. 50° B. 40° C. 30° D. 20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為慶祝開(kāi)業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開(kāi)業(yè)當(dāng)天進(jìn)店購(gòu)物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再?gòu)暮凶又须S機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎(jiǎng).
(1)請(qǐng)用列表或樹(shù)狀圖(樹(shù)狀圖也稱樹(shù)形圖)的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來(lái);
(2)假如你參加了該超市開(kāi)業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B在數(shù)軸上的位置如圖所示,其對(duì)應(yīng)的數(shù)分別是a和b,對(duì)于以下結(jié)論:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;。篴b>0,其中正確的是( )
A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長(zhǎng)方形,點(diǎn)A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿O→C→B→A運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.則當(dāng)t=____秒時(shí),△ODP是腰長(zhǎng)為5的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解答下面的問(wèn)題:
我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其
正整數(shù)解.
例:由,得:,(x、y為正整數(shù))
∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為
問(wèn)題:
(1)請(qǐng)你寫(xiě)出方程的一組正整數(shù)解: .
(2)若為自然數(shù),則滿足條件的x值為 .
(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)A(0,4),點(diǎn)B是x軸正半軸上的整點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)點(diǎn)B的橫坐標(biāo)為4時(shí),m的值是_____.當(dāng)點(diǎn)B的橫坐標(biāo)為4n(n為正整數(shù))時(shí),m=_____(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在線段OA,OC上,且OB=OD,∠1=∠2,AE=CF.
(1)證明:△BEO≌△DFO;
(2)證明:四邊形ABCD是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com