【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點且∠BOD=60°,過點D作⊙O的切線CD交AB的延長線于點C,E為 的中點,連接DE,EB.
(1)求證:四邊形BCDE是平行四邊形;
(2)已知圖中陰影部分面積為6π,求⊙O的半徑r.

【答案】
(1)證明:∵CD是⊙O的切線,∴∠CDO=90°,∵∠BOD=60°,

∴∠C=30°,∠AOD=120°,

∵E為 的中點,

∴∠AOE=∠DOE=60°,

∴∠BOE=120°,

∵OE=OB,

∴∠OEB=∠OBE=30°,

∴∠C=∠OBE=∠E,

∴DE∥BC,BE∥CD,

∴四邊形BCDE是平行四邊形


(2)解:連接OE,由(1)知, ,

∴∠BOE=120°,

∵陰影部分面積為6π,

=6π,

∴r=6.


【解析】(1)由∠BOD=60°E為 的中點,得到 ,于是得到DE∥BC,根據CD是⊙O的切線,得到OD⊥CD,于是得到BE∥CD,即可證得四邊形BCDE是平行四邊形;(2)連接OE,由(1)知, ,得到∠BOE=120°,根據扇形的面積公式列方程即可得到結論.
【考點精析】解答此題的關鍵在于理解平行四邊形的判定的相關知識,掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形,以及對切線的性質定理的理解,了解切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)小寧和婷婷在一起做拼圖游戲,他們用 、△△=”構思出了獨特而有意義的圖形并根據圖形還用簡潔的語言進行了表述:

觀察以上圖案

1)這個圖案有什么特點?

2)它可以通過一個基本圖案經過怎樣的平移而形成?

3)在平移的過程中,基本圖案的大小、形狀、位置是否發(fā)生了變化?你能解釋其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)畫出數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:﹣4.5,﹣2,3,0,4;

(2)用號將(1)中各數(shù)連接起來;

(3)直接填空:數(shù)軸上表示3和表示1的兩點之間的距離是_____,數(shù)軸上A點表示的數(shù)為4,B點表示的數(shù)為﹣2,則A、B之間的距離是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩支清雪隊同時開始清理某路段積雪,一段時間后,乙隊被調往別處,甲隊又用了3小時完成了剩余的清雪任務,已知甲隊每小時的清雪量保持不變,乙隊每小時清雪50噸,甲、乙兩隊在此路段的清雪總量y(噸)與清雪時間x(時)之間的函數(shù)圖象如圖所示.
(1)乙隊調離時,甲、乙兩隊已完成的清雪總量為噸;
(2)求此次任務的清雪總量m;
(3)求乙隊調離后y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,COE=90°,OD平分∠BOF,BOE=50°.

(1)求∠AOC的度數(shù);

(2)求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖它表示甲乙兩人從同一個地點出發(fā)后的情況根據圖像判斷,下列說法錯誤的是()

A. 甲是 8 點出發(fā)的

B. 乙是 9 點出發(fā)的,到 10 點時,他大約走了 10 千米

C. 10 點為止,乙的速度快

D. 兩人在 12 點再次相遇

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應).若AB=1,反比例函數(shù)y= (k≠0)的圖象恰好經過點A′,B,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,延長AB至點E,延長CD至點F,使得BE=DF.連接EF,與對角線AC交于點O. 求證:OE=OF.

查看答案和解析>>

同步練習冊答案