【題目】如圖,已知矩形 的邊長 .某一時刻,動點 從 點出發(fā)沿 方向以 的速度向 點勻速運動;同時,動點 從 點出發(fā)沿 方向以 的速度向 點勻速運動,問:
(1)經(jīng)過多少時間, 的面積等于矩形 面積的 ?
(2)是否存在時刻t,使以A,M,N為頂點的三角形與 相似?若存在,求t的值;若不存在,請說明理由.
【答案】
(1)解:設(shè)經(jīng)過 秒后, 的面積等于矩形 面積的 ,
則有: ,即 ,
解方程,得 .
經(jīng)檢驗,可知 符合題意,所以經(jīng)過1秒或2秒后, 的面積等于矩形 面積的
(2)解:假設(shè)經(jīng)過 秒時,以 為頂點的三角形與 相似,
由矩形 ,可得 ,
因此有 或
即 ①,或 ②.
解①,得 ;解②,得
經(jīng)檢驗, 或 都符合題意,所以動點 同時出發(fā)后,經(jīng)過 秒或 秒時,以 為頂點的三角形與 相似
【解析】(1)根據(jù)△AMN的面積等于矩形ABCD面積的,得到一元二次方程,求出它的解,求出時間;(2)根據(jù)相似三角形的判定方法,兩邊對應成比例且夾角相等,兩三角形相似;求出t的值;此題是綜合題,難度較大,計算和解方程時需認真仔細.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式與點B坐標;
(2)求△AOB的面積;
(3)在第一象限內(nèi),當一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y= (k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,4),且與直線y=﹣ x+1相交于A、B兩點(如圖),A點在y軸上,過點B作BC⊥x軸,垂足為點C(﹣3,0).
(1)求二次函數(shù)的表達式;
(2)點N是二次函數(shù)圖象上一點(點N在AB上方),過N作NP⊥x軸,垂足為點P,交AB于點M,求MN的最大值;
(3)在(2)的條件下,點N在何位置時,BM與NC相互垂直平分?并求出所有滿足條件的N點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一項工程,甲隊單獨做需40天完成,若乙隊先做30天后,甲、乙兩隊一起合做20天恰好完成任務,請問:
(1)乙隊單獨做需要多少天才能完成任務?
(2)現(xiàn)將該工程分成兩部分,甲隊做其中一部分工程用了x天,乙隊做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊做的時間不到15天,乙隊做的時間不到70天,那么兩隊實際各做了多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=x2+bx+c經(jīng)過點(2,-3)和(4,5).
(1)求拋物線的表達式及頂點坐標;
(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達式;
(3)在(2)的條件下,當-2<x<2時,直線y=m與該圖象有一個公共點,求m的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由.
(2)結(jié)論應用:① 如圖2,點M,N在反比例函數(shù) (k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.
② 若①中的其他條件不變,只改變點M,N的位置如圖3所示,請判斷 MN與EF是否平行?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y= 與y軸交于點A,與直線y=﹣ 交于點B,以AB為邊向右作菱形ABCD,點C恰與原點O重合,拋物線y=(x﹣h)2+k的頂點在直線y=﹣ 上移動.若拋物線與菱形的邊AB、BC都有公共點,則h的取值范圍是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、B、C在坐標軸上,且A、B、C的坐標分別為、、過點A的直線AD與y軸正半軸交于點D,
求直線AD和BC的解析式;
如圖2,點E在直線上且在直線BC上方,當的面積為6時,求E點坐標;
在的條件下,如圖3,動點M在直線AD上,動點N在x軸上,連接ME、NE、MN,當周長最小時,求周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,請證明∠A+∠B+∠C=180°
(2)如圖的圖形我們把它稱為“8字形”,請證明∠A+∠B=∠C+∠D
(3)如圖,E在DC的延長線上,AP平分∠BAD,CP平分∠BCE,猜想∠P與∠B、∠D之間的關(guān)系,并證明
(4)如圖,AB∥CD,PA平分∠BAC,PC平分∠ACD,過點P作PM、PE交CD于M,交AB于E,則①∠1+∠2+∠3+∠4不變;②∠3+∠4﹣∠1﹣∠2不變,選擇正確的并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com