【題目】如圖,直線y= 與y軸交于點A,與直線y=﹣ 交于點B,以AB為邊向右作菱形ABCD,點C恰與原點O重合,拋物線y=(x﹣h)2+k的頂點在直線y=﹣ 上移動.若拋物線與菱形的邊AB、BC都有公共點,則h的取值范圍是( )

A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1

【答案】A
【解析】解:∵將y= 與y=﹣ 聯(lián)立得: ,解得:

∴點B的坐標(biāo)為(﹣2,1).

由拋物線的解析式可知拋物線的頂點坐標(biāo)為(h,k).

∵將x=h,y=k,代入得y=﹣ 得:﹣ h=k,解得k=﹣ ,

∴拋物線的解析式為y=(x﹣h)2 h.

如圖1所示:當(dāng)拋物線經(jīng)過點C時.

將C(0,0)代入y=(x﹣h)2 h得:h2 h=0,解得:h1=0(舍去),h2=

如圖2所示:當(dāng)拋物線經(jīng)過點B時.

將B(﹣2,1)代入y=(x﹣h)2 h得:(﹣2﹣h)2 h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣ (舍去).

綜上所述,h的范圍是﹣2≤h≤

所以答案是:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC中,分別延長邊AB,BCCA,使得BDAB,CE2BC,AF3CA,若ABC的面積為1,則DEF的面積為( )

A. 12B. 14C. 16D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形 的邊長 .某一時刻,動點 點出發(fā)沿 方向以 的速度向 點勻速運動;同時,動點 點出發(fā)沿 方向以 的速度向 點勻速運動,問:

(1)經(jīng)過多少時間, 的面積等于矩形 面積的 ?
(2)是否存在時刻t,使以A,M,N為頂點的三角形與 相似?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m.n]上的“閉函數(shù)”.如函數(shù) ,當(dāng)x=1時,y=3;當(dāng)x=3時,y=1,即當(dāng) 時,有 ,所以說函數(shù) 是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y= 是閉區(qū)間[1,2016]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若二次函數(shù)y= 是閉區(qū)間[1,2]上的“閉函數(shù)”,求k的值;
(3)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的表達(dá)式(用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,AD的角平分線,,垂足為E

求證:

已知,求AC的長;

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小明乘坐家門口的公交車到和平公園游玩,他先乘坐公交車0.8小時后達(dá)到書城,逗留一段時間后繼續(xù)坐公交車到和平公園,小明出發(fā)一段時間后,小明的媽媽不放心,于是駕車沿相同的路線前往和平公園,如圖是他們離家的路程與離家時間的關(guān)系圖,請根據(jù)圖回答下列問題:

1)小明家到和平公園的路程為 ,他在書城逗留的時間為 ;

2)圖中點表示的意義是 ;

3)求小明的媽媽駕車的平均速度(平均速度=).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C.

(1)求證:CD是⊙O的切線;
(2)若tanC= ,⊙O的半徑為2,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,EBC的延長線上,且BDDE

(1)如圖,若點D為線段AC的中點,求證:ADCE;

(2)如圖,若點D為線段AC上任意一點,求證:ADCE.

查看答案和解析>>

同步練習(xí)冊答案