【題目】請認真觀察圖形,解答下列問題:

(1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);
(2)由(1),你能得到怎樣的等量關系?請用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

【答案】
(1)解:兩個陰影圖形的面積和可表示為:

a2+b2或 (a+b)2﹣2ab


(2)解:a2+b2=(a+b)2﹣2ab
(3)解:∵a,b(a>b)滿足a2+b2=53,ab=14,

∴①(a+b)2=a2+b2+2ab

=53+2×14=81

∴a+b=±9,

又∵a>0,b>0,∴a+b=9.

②∵a4﹣b4=(a2+b2)(a+b)(a﹣b),

且∴a﹣b=±5

又∵a>b>0,

∴a﹣b=5,

∴a4﹣b4=(a2+b2)(a+b)(a﹣b)=53×9×5=2385.


【解析】(1)直接把兩個正方形的面積相加或利用大正方形的面積減去兩個長方形的面積;(2)利用面積相等把(1)中的式子聯(lián)立即可;(3)注意a,b都為正數(shù)且a>b,利用(2)的結論進行探究得出答案即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某地新建的一個企業(yè),每月將生產1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:

污水處理器型號

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.

(1)求每臺A型、B型污水處理器的價格;

(2)為確保將每月產生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和1個B品牌的計算器共需122元;購買1個A品牌和2個B品牌的計算器共需124元.
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店舉行促銷活動,具體辦法如下:購買A品牌計算器按原價的九折銷售,購買B品牌計算器超出10個以上超出的部分按原價的八折銷售,設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數(shù)關系式;
(3)小明準備聯(lián)系一部分同學集體購買同一品牌的計算器,若購買計算器的數(shù)量超過10個,問購買哪種品牌的計算器更合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠C=90°,AC=6,BC=8,D、E分別是斜邊AB和直角邊CB上的點,把△ABC沿著直線DE折疊,頂點B的對應點是B′.

(1)如圖(1),如果點B′和頂點A重合,求CE的長;
(2)如圖(2),如果點B′和落在AC的中點上,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究:
(1)已知:如圖1,在正方形ABCD中,點E、H分別在BC、AB上,若AE⊥DH于點O,求證AE=DH;

類比探究:
(2)如圖2,在正方形ABCD中,點H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點O,探究線段EF與HG的數(shù)量關系,并說明理由;
拓展應用:
(3)已知,如圖3,在(2)問條件下,若BC=4,E為BC的中點,AF= AD,求HG的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC和△CEF是兩個不等的等邊三角形,且有一個公共頂點C,連接AF和BE,線段AF和BE有怎樣的大小關系?證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D是BC上的一點,AB=10,BD=6,AD=8,AC=17.

(1)判斷AD與BC的位置關系,并說明理由;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD內一點,△CDE是等邊三角形,連接EB、EA,延長BE交邊AD點于點F.

(1)求證:△ADE≌△BCE;
(2)求∠AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4,0.5),B(﹣1,2)是一次函數(shù)y=ax+b與反比例函數(shù) (m<0)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.

(1)根據(jù)圖象直接回答:在第二象限內,當x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.

查看答案和解析>>

同步練習冊答案