【題目】如圖,點E是正方形ABCD內(nèi)一點,△CDE是等邊三角形,連接EB、EA,延長BE交邊AD點于點F.
(1)求證:△ADE≌△BCE;
(2)求∠AFB的度數(shù).
【答案】
(1)證明:∵ABCD是正方形
∴AD=BC,∠ADC=∠BCD=90°
又∵三角形CDE是等邊三角形
∴CE=DE,∠EDC=∠ECD=60°
∴∠ADE=∠ECB
∴△ADE≌△BCE.
(2)解:∵△CDE是等邊三角形,
∴CE=CD=DE,
∵四邊形ABCD是正方形
∴CD=BC,
∴CE=BC,
∴△CBE為等腰三角形,且頂角∠ECB=90°﹣60°=30°
∴∠EBC= (180°﹣30°)=75°
∵AD∥BC
∴∠AFB=∠EBC=75°.
【解析】(1)由題意正方形ABCD的邊AD=DC,在等邊三角形CDE中,CE=DE,∠EDC等于∠ECD,即能證其全等.(2)根據(jù)等邊三角形、等腰三角形、平行線的角度關(guān)系,可以求得∠AFB的度數(shù).
【考點精析】根據(jù)題目的已知條件,利用正方形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為 .
其中正確結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);
(2)由(1),你能得到怎樣的等量關(guān)系?請用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴(kuò)大銷量,5月份商場對這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.
(1)求該童裝4月份的銷售單價;
(2)若4月份銷售這種童裝獲利8000元,6月全月商場進(jìn)行“六一兒童節(jié)”促銷活動.童裝在4月售價的基礎(chǔ)上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個如圖所示的長方體的透明魚缸,假設(shè)其長AD=80 cm,高AB=60 cm,水深A(yù)E=40 cm,在水面上緊貼內(nèi)壁G處有一魚餌,G在水面線EF上,且EG=60 cm.一小蟲想從魚缸外的點A處沿缸壁爬到魚缸內(nèi)G處吃魚餌.
(1)小蟲應(yīng)該走怎樣的路線才可使爬行的路程最短?請畫出它的爬行路線,并用箭頭標(biāo)注;
(2)試求小蟲爬行的最短路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校實施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機(jī)抽取若干學(xué)生進(jìn)行了“我最想選的一門課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 20 | 30 |
根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯誤的是( )
A. 這次被調(diào)查的學(xué)生人數(shù)為200人 B. 扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C. 被調(diào)查的學(xué)生中最想選F的人數(shù)為35人 D. 被調(diào)查的學(xué)生中最想選D的有55人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.
(1)△ABC的面積等于;
(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(3)寫出點A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件20元,售價為每件25元時,每天可賣出250件.市場調(diào)查反映:如果調(diào)整價格,一件商品每漲價1元,每天要少賣出10件.
(1)求出每天所得的銷售利潤w(元)與每件漲價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該商品每天的銷售利潤最大;
(3)商場的營銷部在調(diào)控價格方面,提出了A,B兩種營銷方案.
方案A:每件商品漲價不超過5元;
方案B:每件商品的利潤至少為16元.
請比較哪種方案的最大利潤更高,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com