【題目】如圖①②所示,將兩個相同三角板的兩個直角頂點O重合在一起.

1)若,如圖①,請求出的度數(shù);

2)若,如圖②,請求出的度數(shù);

3)猜想:的關系(請直接寫出答案即可)

【答案】1;(2;(3

【解析】

1)本題利用周角性質(zhì)即可求出角的度數(shù);

2)本題利用角的和差即可求出角的度數(shù);

3)分兩種情況討論,利用周角性質(zhì)和角的和差即可求出角的度數(shù).

1)∵,

2)∵,

3)∠AOD和∠BOC的關系是:∠AOD+BOC=180°.理由如下:

如圖①,∠AOD+BOC=360°-∠AOB-∠DOC=360°90°90°=180°;

如圖②,∠AOD+BOC=AOC+COD+BOC=AOC+BOC+COD=AOB+COD=90°+90°=180°

綜上所述:∠AOD+BOC=180°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明遇到這樣一個問題,如圖,ABC中,∠BAC=120°,ADBCD,且AB+BD=DC.求∠C的度數(shù)。小明通過探究發(fā)現(xiàn),延長CD至點Q,使BQ=AB,再證明ADCADQ,使問題得到解決.

1)根據(jù)閱讀材料回答,ADCADQ的條件是________(SSS,SAS,AAS,ASA,HL)

2)參考小明思考問題的方法,解答下列問題:求∠C的度數(shù);

3)解決問題,如圖,已知,ABC中,過點B任意作射線l,在l上取一點D,使∠ABD=ACD,AMBD于點M,且BM=MD+CD。探究ABAC的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸于點,交軸于點.點軸的負半軸上,且的面積為8,直線和直線相交于點

1)求直線的解析式;

2)在線段上找一點,使得,線段相交于點

求點的坐標;

軸上,且,直接寫出的長為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點Ax軸上,點Cy軸上,點B的坐標是,將沿直線BD折疊,使得點C落在對角線OB上的點E處,折痕與OC交于點D

1)求直線OB的解析式及線段OE的長.

2)求直線BD的解析式及點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點EEFBC,分別交BDCDG,F兩點.若MN分別是DG,CE的中點,則MN的長為( 

A. 3 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用“☆”定義一種新運算:對于任意有理數(shù)ab,規(guī)定ab=.例如:2=.從-50,-40,-30,-20,-10,0,1020,30,40,50中任選兩個有理數(shù)做a,bab)的值,并計算ab,那么所有運算結果中的最大值是_________ .最小值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結果保留整數(shù)).

(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個多邊形,你能否用一直線去截這個多邊形,使得到的新多邊形分別滿足下列條件:畫出圖形,把截去的部分打上陰影

新多邊形內(nèi)角和比原多邊形的內(nèi)角和增加了

新多邊形的內(nèi)角和與原多邊形的內(nèi)角和相等.

新多邊形的內(nèi)角和比原多邊形的內(nèi)角和減少了

將多邊形只截去一個角,截后形成的多邊形的內(nèi)角和為,求原多邊形的邊數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, △ABC的三個頂點的位置如圖所示,點A'的坐標是

(-2,2, 現(xiàn)將ABC平移,使點A變換為點A',B、C分別是BC的對應點。

1)請畫出平移后的像A'B'C'(不寫畫法) ,并直接寫出點BC的坐標:

B ( ) 、C ( )

2)若ABC 內(nèi)部一點P的坐標為(a,b),則點P   的對應點P 的坐標是 ( ) .

查看答案和解析>>

同步練習冊答案