【題目】如圖,ABC中,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交ACABD,E兩點(diǎn),并連接BD,DE.若A=30°AB=AC,則BDE的度數(shù)為何( 。

A45 B52.5 C67.5 D75

【答案】C

【解析】

根據(jù)AB=AC,利用三角形內(nèi)角和定理求出ABC的度數(shù),再利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出DBC=30°,然后即可求出BDE的度數(shù).

解:AB=AC

∴∠ABC=ACB,

∵∠A=30°,

∴∠ABC=ACB=180°﹣30°=75°

B為圓心,BC長(zhǎng)為半徑畫(huà)弧,

BE=BD=BC,

∴∠BDC=ACB=75°,

∴∠CBD=180°﹣75°﹣75°=30°,

∴∠DBE=75°﹣30°=45°,

∴∠BED=BDE=180°﹣45°=67.5°

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在兒時(shí)玩玩具手槍?zhuān)诿闇?zhǔn)時(shí)總是半閉著眼,對(duì)著準(zhǔn)星與目標(biāo),用數(shù)學(xué)知識(shí)解釋為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過(guò)15m/s,在一條筆直公路BD的上方A處有一探測(cè)儀,如圖,AD=24mD=90°,第一次探測(cè)到一輛轎車(chē)從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°.

1)求B,C的距離.

2)通過(guò)計(jì)算,判斷此轎車(chē)是否超速.(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)角的兩邊分別平行,其中一個(gè)角比另一個(gè)角的4倍少30°,這兩個(gè)角是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿足下列條件的四邊形不是正方形的是(

A. 對(duì)角線相互垂直的矩形 B. 對(duì)角線相等的菱形

C. 對(duì)角線相互垂直且相等的四邊形 D. 對(duì)角線垂直且相等的平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古代名著《算學(xué)啟蒙》中有一題:良馬日行二百四十里.駑馬日行一百五十里.駑馬先行一十二日,問(wèn)良馬幾何追及之.意思是:跑得快的馬每天走240里,跑得慢的馬每天走150里.慢馬先走12天,快馬____天可追上慢馬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次夏令營(yíng)活動(dòng)中,小霞同學(xué)從營(yíng)地A點(diǎn)出發(fā),要到距離A點(diǎn)10千米的C地去,先沿北偏東70°方向走了8千米到達(dá)B地,然后再?gòu)腂地走了6千米到達(dá)目的地C,此時(shí)小霞在B地的(

A.北偏東20°方向上
B.北偏西20°方向上
C.北偏西30°方向上
D.北偏西40°方向上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件襯衫先按成本加價(jià)60元標(biāo)價(jià),再以8折出售,仍可獲利24元,這件襯衫的成本是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個(gè)外角.
實(shí)驗(yàn)與操作:
根據(jù)要求進(jìn)行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫(xiě)作法)

(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE,CF.
猜想并證明:
判斷四邊形AECF的形狀并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案