【題目】正方形ABCD中,E、F分別是ABCB上的點(diǎn),且AECF,CEAFM,∠CMF45°,則的值為( 。

A.B.C.D.

【答案】A

【解析】

首先利用正方形性質(zhì)得出ABBC,從而得出BEBF,然后進(jìn)一步證明△ABF與△CBE全等,此后再通過證明△AEM與△CFM全等得出AMCMEMFM,進(jìn)一步證明出點(diǎn)M在點(diǎn)A和點(diǎn)C的對(duì)稱軸上,連接BD,過MMGBCG,通過證明△CMG與△CEB相似,然后進(jìn)一步利用相似三角形性質(zhì)求解即可.

∵在正方形ABCD中,

ABBC

AECF,

BEBF

在△ABF與△CBE中,

AB=CB,∠ABF=CBE,BF=BE

∴△ABFCBESAS),

∴∠BAF=∠BCE,

在△AEM與△CFM中,

∵∠AME=CMF,∠EAM=FCM,AE=CF

∴△AEMCFMAAS),

AMCM,EMFM

∴點(diǎn)M在點(diǎn)A和點(diǎn)C的對(duì)稱軸上,

如圖,連接BD,過MMGBCG,

則點(diǎn)MBD上,

∴∠ABM=∠CBM45°

∵∠AME=∠CMF45°,

∴∠AME=∠CBM,

∴∠BEM=∠BAM+AME=∠BME=∠CBM+BCM=∠BME,

BEBM,

MGBC,

BGGM

設(shè)BGGM,

BEBM,

MGBE,

∴△CMG~CEB,

,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE∥BC,EF∥AB.

(1)求證:△ADE∽△EFC;

(2)如果AB=6,AD=4,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.

(1)請(qǐng)完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,在圖中標(biāo)出該圓弧所在圓的圓心D.

(2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:

①寫出點(diǎn)的坐標(biāo):D( );

②⊙D的半徑= (結(jié)果保留根號(hào));

③利用網(wǎng)格試在圖中找出格點(diǎn)E ,使得直線EC與⊙D相切(寫出所有可能的結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寬與長的比是(約為0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價(jià)值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:如圖,作正方形ABCD,分別取ADBC的中點(diǎn)E,F,連接EFDF,作∠DFC的平分線,交AD的延長線于點(diǎn)H,作HGBC,交BC的延長線于點(diǎn)G,則下列矩形是黃金矩形的是( 。

A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為正方形ABCD 的中心,EAB 邊上一點(diǎn),FBC邊上一點(diǎn),EBF的周長等于 BC 的長.

(1)求∠EOF 的度數(shù).

(2)連接 OA、OC(如圖2).求證:AOECFO.

(3)OE=OF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,九年級(jí)(1)班的小明與小艷兩位同學(xué)去操場測量旗桿DE的高度,已知直立在地面上的竹竿AB的長為3 m某一時(shí)刻,測得竹竿AB在陽光下的投影BC的長為2 m.

(1)請(qǐng)你在圖中畫出此時(shí)旗桿DE在陽光下的投影并寫出畫圖步驟;

(2)在測量竹竿AB的影長時(shí),同時(shí)測得旗桿DE在陽光下的影長為6 m,請(qǐng)你計(jì)算旗桿DE的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是.過點(diǎn)于點(diǎn),連接

1)求證:;

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值,如果不能,說明理由:

3)當(dāng)為何值時(shí),為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寶安區(qū)的某商場經(jīng)市場調(diào)查,預(yù)計(jì)一款夏季童裝能獲得市場青睞,便花費(fèi) 15000 元購進(jìn)了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進(jìn)貨,由于第二批進(jìn)貨數(shù)量是第一批進(jìn)貨數(shù)量的 2 倍,因此單價(jià)便宜了 10 元,購進(jìn)第二批童裝一共花費(fèi)了 27000 元.

(1)該店所購進(jìn)的第一批童裝的單價(jià)是多少元?

(2)兩批童裝按相同標(biāo)價(jià)出售,經(jīng)理根據(jù)市場情況,決定對(duì)第二批剩余的 100 件打七折銷售.若兩批童裝全部售完后,利潤不低于 30%,那么每件童裝標(biāo)價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校將開啟“大閱讀”活動(dòng),為了充實(shí)書吧藏書,學(xué)生會(huì)號(hào)召全年級(jí)學(xué)生捐書,得到各班的大力支持.同時(shí),年級(jí)部分備課組的老師也購買藏書充實(shí)到年級(jí)書吧,其中數(shù)學(xué)組購買了甲、乙兩種自然科學(xué)書籍若干本,用去699元;語文組購買了A、B兩種文學(xué)書籍若干本,用去6138元,已知A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價(jià)相同,乙種書與A種書的單價(jià)相同,若甲種書的單價(jià)比乙種書的單價(jià)多7元,則乙種書籍比甲種書籍多買了_____本.

查看答案和解析>>

同步練習(xí)冊(cè)答案