如圖,在矩形ABCD(AB<AD)中,將△ABE沿AE對(duì)折,使AB邊落在對(duì)角線AC上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,同時(shí)將△CEG沿EG對(duì)折,使CE邊落在EF所在直線上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為H.
(1)證明:AF∥HG(圖(1));
(2)如果點(diǎn)C的對(duì)應(yīng)點(diǎn)H恰好落在邊AD上(圖(2)).判斷四邊形AECH的形狀,并說明理由.
(1)由軸對(duì)稱性質(zhì)可得∠AFE=∠B=90°,∠H=∠BCD=90°,問題得證;(2)菱形
【解析】
試題分析:(1)由軸對(duì)稱性質(zhì)可得∠AFE=∠B=90°,∠H=∠BCD=90°,問題得證;
(2)根據(jù)平行線的性質(zhì)可得∠AEB=∠DAE,再結(jié)合∠AEB=∠AEH可得∠DAE=∠AEH,即可證得AH=EH,由EC=EH可得AH=EC,再結(jié)合AH∥EC,AC⊥EH即可證得結(jié)論.
(1)由對(duì)折(軸對(duì)稱)性質(zhì)可得:∠AFE=∠B=90°,∠H=∠BCD="90°"
∴∠AFH=∠AFE=∠H
∴AF∥HG
(2)四邊形 AECH是菱形.理由如下:
∵AD∥BC
∴∠AEB=∠DAE
∵∠AEB=∠AEH
∴∠DAE=∠AEH
∴AH=EH
∵EC=EH
∴AH="EC"
∵AH∥EC,AC⊥EH
∴四邊形 AECH是菱形.
考點(diǎn):折疊的性質(zhì),平行線的性質(zhì),菱形的判定
點(diǎn)評(píng):特殊四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、 | B、 | C、 | D、 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com