【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,且與AB的延長(zhǎng)線交于點(diǎn)E.點(diǎn)C是弧BF的中點(diǎn).

(1)求證:ADCD;

(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點(diǎn)B出發(fā),沿著BE--EC--CB爬回至點(diǎn)B,求螞蟻爬過的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)

【答案】(1)證明見解析;(2)11.3

【解析】

1)連接OC,根據(jù)切線的性質(zhì)得到OCCD,證明OCAD根據(jù)平行線的性質(zhì)證明;

2)根據(jù)圓周角定理得到∠COE=60°,根據(jù)勾股定理、弧長(zhǎng)公式計(jì)算即可.

1)連接OC

∵直線CD與⊙O相切OCCD

∵點(diǎn)C的中點(diǎn),∴∠DAC=EAC

OA=OC,∴∠OCA=EAC,∴∠DAC=OCAOCAD,ADCD

2∵∠CAD=30°,∴∠CAE=CAD=30°,由圓周角定理得COE=60°,OE=2OC=6,EC=OC=3==π,∴螞蟻爬過的路程=3+3+π11.3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣2x﹣3x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線l與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為2.

(1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;

(2)P是線段AC上的一個(gè)動(dòng)點(diǎn)(PA,C不重合),過P點(diǎn)作y軸的平行線交拋物線于點(diǎn)E,求△ACE面積的最大值;

(3)若直線PE為拋物線的對(duì)稱軸,拋物線與y軸交于點(diǎn)D,直線ACy軸交于點(diǎn)Q,點(diǎn)M為直線PE上一動(dòng)點(diǎn),則在x軸上是否存在一點(diǎn)N,使四邊形DMNQ的周長(zhǎng)最?若存在,求出這個(gè)最小值及點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說明理由.

(4)點(diǎn)H是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、H四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對(duì)函數(shù)y=x22|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.

(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表:

x

3

2

1

0

1

2

3

y

3

m

1

0

1

0

3

其中m=

(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分;

(3)觀察函數(shù)圖象,寫出2條函數(shù)的性質(zhì);

(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):

函數(shù)圖象與x軸有 個(gè)交點(diǎn),所對(duì)應(yīng)的方程x22|x|=0有 個(gè)實(shí)數(shù)根;

方程x22|x|=2有 個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,,的平分線.若,分別是上的動(dòng)點(diǎn),則的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條筆直的公路上有、三地、兩地相距千米,甲、乙兩個(gè)野外徒步愛好小組從 、兩地同時(shí)出發(fā),沿公路始終勻速相向而行,分別走向兩地.甲、乙兩組到地的距離,(千米)與行走時(shí)間(時(shí))的關(guān)系如圖所示.

1)請(qǐng)?jiān)趫D中標(biāo)出地的位置,并寫出相應(yīng)的距離: ;

2)在圖中求出甲組到達(dá)地的時(shí)間;

3)求岀乙組從地到地行走過程中與行走時(shí)間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式.

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,且,平分,;.則下列結(jié)論正確的是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線a≠0)與x軸交于A(﹣1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣),該拋物線與BE交于另一點(diǎn)F,連接BC

(1)求該拋物線的解析式,并用配方法把解析式化為的形式;

(2)動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿拋物線對(duì)稱軸方向向上以每秒1個(gè)單位的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,連接OMBM,當(dāng)t為何值時(shí),OMB為等腰三角形?(3)在x軸上方的拋物線上,是否存在點(diǎn)P,使得PBFBA平分?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案