【題目】如圖,在中,,且,平分交于,,.①;②;③;④.則下列結(jié)論正確的是________.
【答案】①②③④
【解析】
根據(jù)已知條件可證△ADC∽△CDB,得出∠ACB=90°.根據(jù)等量關(guān)系及等腰三角形的性質(zhì)得到CF=BN.根據(jù)同位角相等,證明FN∥AB.證明△ADF∽△CDA,根據(jù)相似三角形的性質(zhì)得出AD2=DFDC.
②∵CD⊥AB,
∴
∵,
∴,
∴△ADC∽△CDB,
∴∠ACD=∠B,
∴,故本選項(xiàng)正確;
①∵AE平分∠CAB
∴∠CAE=∠DAF,
∴△CAE∽△DAF,
∴∠AFD=∠AEC,
∴∠CFE=∠AEC,
∴CF=CE,
∵CN=BE,
∴CE=BN,
∴CF=BN,故本選項(xiàng)正確;
③∵∠EAB=∠B,
∴EA=EB,
∵∠ACD=∠B,∠CAE=∠EAB,
∴∠ACD=∠CAE,
∴FA=FC,
∴FA=FC=BN,
EF=EN,
∠FEN=∠AEB,
∴△EFN∽△EAB,
∴∠EFN=∠EAB,
∴FN∥AB,故本選項(xiàng)正確;
④易證△ADF∽△CDA,
∴ 故本選項(xiàng)正確;
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正整數(shù)n使得在計(jì)算n+(n+1)+(n+2)的過(guò)程中,個(gè)數(shù)位上均不產(chǎn)生進(jìn)為現(xiàn)象,則稱n為“本位數(shù)”,例如2和30是“本位數(shù)”,而5和91不是“本位數(shù)”.現(xiàn)從所有大于0且小于100的“本位數(shù)”中,隨機(jī)抽取一個(gè)數(shù),抽到奇數(shù)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,且與AB的延長(zhǎng)線交于點(diǎn)E.點(diǎn)C是弧BF的中點(diǎn).
(1)求證:AD⊥CD;
(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點(diǎn)B出發(fā),沿著BE--EC--弧CB爬回至點(diǎn)B,求螞蟻爬過(guò)的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)分別在菱形的邊上滑動(dòng)(點(diǎn)不與重合),且.
(1)如圖1,若,求證:;
(2)如圖2,若與不垂直,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明,若不成立,說(shuō)明理由;
(3)如圖3,若,請(qǐng)直接寫(xiě)出四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)E與正方形ABCD的頂點(diǎn)A重合,三角扳的一邊交CD于點(diǎn)F.另一邊交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:EF=EG;
(2)如圖2,移動(dòng)三角板,使頂點(diǎn)E始終在正方形ABCD的對(duì)角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明:若不成立.請(qǐng)說(shuō)明理由:
(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過(guò)點(diǎn)B,其他條件不變,若AB=a、BC=b,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線過(guò)點(diǎn)且與軸交于點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn).過(guò)點(diǎn)且與直線平行的直線交于點(diǎn),交軸于點(diǎn),連接.
(1)求直線的解析式;
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線的解析式為,它與坐標(biāo)軸分別交于A,B兩點(diǎn).
(1)求出點(diǎn)A的坐標(biāo);
(2)動(dòng)點(diǎn)C從y軸上的點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向y軸負(fù)半軸運(yùn)動(dòng),求出點(diǎn)C運(yùn)動(dòng)的時(shí)間t,使得為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD=AE,添加下列條件仍無(wú)法證明△ABE≌△ACD的是 ( 。
A. AB=AC B. ∠ADC=∠AEB C. ∠B=∠C D. BE=CD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com