【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
【答案】(1)反比例函數(shù)的解析式是y=;一次函數(shù)的解析式是y=x+1;(2)﹣3<x<0或x>2;(3)p≤﹣2或p>0.
;
【解析】試題分析:(1)把A(2,m),B(n,2)代入反比例函數(shù)解析式求出m=n, 過A作AE⊥x軸于E,過B作BF⊥y軸于F,延長(zhǎng)AE、BF交于D,根據(jù)三角形的面積公式可得出關(guān)于n的方程,求出n的值,得出的坐標(biāo),代入反比例函數(shù)和一次函數(shù)的解析式,即可求出答案;
(2)根據(jù)的橫坐標(biāo),結(jié)合圖象即可得出答案;
(3)分為兩種情況:當(dāng)點(diǎn)在第三象限時(shí)和當(dāng)點(diǎn)在第一象限時(shí),根據(jù)坐標(biāo)和圖象即可得出答案.
試題解析:(1)把A(2,m),B(n,2)代入得:k2=2m=2n,
即m=n,
則A(2,n),
過A作AE⊥x軸于E,過B作BF⊥y軸于F,延長(zhǎng)AE、BF交于D,
∵A(2,n),B(n,2),
∴BD=2n,AD=n+2,BC=|2|=2,
∵
解得:n=3,
即A(2,3),B(3,2),
把A(2,3)代入得:
即反比例函數(shù)的解析式是
把A(2,3),B(3,2)代入 得:
解得:
即一次函數(shù)的解析式是y=x+1;
(2)∵A(2,3),B(3,2),
∴不等式 的解集是3<x<0或x>2;
(3)分為兩種情況:當(dāng)點(diǎn)P在第三象限時(shí),要使,實(shí)數(shù)p的取值范圍是,
當(dāng)點(diǎn)P在第一象限時(shí),要使,實(shí)數(shù)p的取值范圍是P>0,
即P的取值范圍是或p>0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市有兩家出租車公司,收費(fèi)標(biāo)準(zhǔn)不同,甲公司收費(fèi)標(biāo)準(zhǔn)為:起步價(jià)8元,超過3千米后,超過的部分按照每千米1.5元收費(fèi);乙公司收費(fèi)標(biāo)準(zhǔn)為:起步價(jià)11元,超過3千米后,超過的部分按照每千米1.2元收費(fèi),車輛行駛千米,本題中取整數(shù),不足1千米的路程按1千米計(jì)費(fèi),根據(jù)上述內(nèi)容,完成以下問題:
(1)當(dāng)時(shí),乙公司比甲公司貴______元;
(2)當(dāng),且為整數(shù)時(shí),甲乙兩公司的收費(fèi)分別是多少?(結(jié)果用化簡(jiǎn)后的含的式子表示);
(3)當(dāng)行駛路程為18千米時(shí),哪家公司的費(fèi)用更便宜?便宜多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開始的3分內(nèi)只進(jìn)水不出水,在隨后的9分內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的關(guān)系如圖所示.
①當(dāng)0≤x≤3時(shí),求y與x之間的函數(shù)關(guān)系.
②3<x≤12時(shí),求y與x之間的函數(shù)關(guān)系.
③當(dāng)容器內(nèi)的水量大于5升時(shí),求時(shí)間x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).請(qǐng)你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每個(gè)正方形四條邊上的整點(diǎn)的個(gè)數(shù).按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點(diǎn)共有______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(x0,y0)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離證明可用公式d=計(jì)算.
例如:求點(diǎn)P(﹣1,2)到直線y=3x+7的距離.
解:∵直線y=3x+7,其中k=3,b=7.
∴點(diǎn)P(﹣1,2)到直線y=3x+7的距離為:
d====.
根據(jù)以上材料,解答下列問題:
(1)求點(diǎn)P(﹣1,3)到直線y=x﹣3的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,3),半徑r為3,判斷⊙Q與直線y=x+9的位置關(guān)系并說明理由;
(3)已知直線y=3x+3與y=3x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖a是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖b;再分別連接圖b中間小三角形的三邊的中點(diǎn),得到圖c
(1)圖b有 個(gè)三角形,圖c有 個(gè)三角形.
(2)按上面的方法繼續(xù)下去,第n個(gè)圖形中有多少個(gè)三角形(用n的代數(shù)式表示結(jié)論).
(3)當(dāng)n=10時(shí),第10個(gè)圖形中有多少個(gè)三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣6,點(diǎn)B在數(shù)軸上A點(diǎn)右側(cè),且AB=14,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)M表示的數(shù) (用含t的式子表示);
(2)動(dòng)點(diǎn)N從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)M,N同時(shí)出發(fā),問點(diǎn)M運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)N?
(3)若P為AM的中點(diǎn),F為MB的中點(diǎn),點(diǎn)M在運(yùn)動(dòng)過程中,線段PF的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段PF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某股民上星期五買進(jìn)某公司股票1000股,每股27元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)(周六、周日休盤)
星期 | 一 | 二 | 三 | 四 | 五 |
每股 漲跌 | +4 | +4.5 | -1 | -1.5 | -4 |
(1)星期五收盤時(shí),每股是多少元?
(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(3)已知該股民買進(jìn)股票時(shí)付了0.15%的手續(xù)費(fèi),賣出時(shí)需付成交額0.15%的手續(xù)費(fèi)和0.1%的交易稅,若該股民在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)均為1的小正方形網(wǎng)格紙中,△OAB的頂點(diǎn)O,A,B均在格點(diǎn)上,且O是直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上.
(1)以O為位似中心,將△OAB放大,使得放大后的△OA1B1,與△OAB對(duì)應(yīng)線段的比為2:1,畫出△OA1B1,(所畫△OA1B1與△OAB在原點(diǎn)兩側(cè));
(2)直接寫出點(diǎn)A1、B1的坐標(biāo)_____;
(3)直接寫出tan∠OA1B1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com