【題目】某校門口豎著“前方學(xué)校,減速慢行”的交通指示牌CD,數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)將“測(cè)量交通指示牌CD的高度”作為一項(xiàng)課題活動(dòng),他們定好了如下測(cè)量方案:

項(xiàng)目

內(nèi)容

課題

測(cè)量交通指示牌CD的高度

測(cè)量示意圖

測(cè)量步驟

(1)從交通指示牌下的點(diǎn)M處出發(fā)向前走10 米到達(dá)A處;

(2)在點(diǎn)A處用量角儀測(cè)得∠DAM27°;

(3)從點(diǎn)A沿直線MA向前走10米到達(dá)B處;(4)在點(diǎn)B處用量角儀測(cè)得∠CBA18°.

請(qǐng)你幫助該小組同學(xué)根據(jù)上表中的測(cè)量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89tan27°≈0.51,sin18°≈0.31cos18°≈0.95,tan18°≈0.32)

【答案】交通指示牌CD的高度約為1.3米.

【解析】

在△CMB中求出CM的長(zhǎng)度,在△ADM中,求出DM的長(zhǎng)度,最后利用CDCMDM得出結(jié)果.

解:在RtCMB中,

∵∠CMB90°,MBAMAB20米,∠CBA18°,

CMMB·tan 18°20tan 18°()

RtADM中,

∵∠AMD90°,∠MAD27°,

DMAM·tan 27°10tan 27°(),

CDCMDM20tan 18°10tan27°≈1.3()

答:交通指示牌CD的高度約為1.3米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;

(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹狀圖)說明理由(紙牌用表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形中,,直線.當(dāng)直線沿射線方向,從點(diǎn)開始向右平移時(shí),直線與四邊形的邊分別相交于點(diǎn)、.設(shè)直線向右平移的距離為,線段的長(zhǎng)為,且的函數(shù)關(guān)系如圖2所示,則四邊形的周長(zhǎng)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,是弦,是弧的中點(diǎn),過點(diǎn)垂直于直線垂足為,交的延長(zhǎng)線于點(diǎn)

求證:的切線;

,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一種雪球夾的簡(jiǎn)化結(jié)構(gòu)圖,其通過一個(gè)固定夾體和一個(gè)活動(dòng)夾體的配合巧妙地完成夾雪、投雪的操作,不需人手直接接觸雪,使用方便,深受小朋友的喜愛.當(dāng)雪球夾閉合時(shí),測(cè)得∠AOB30°,OAOB14 cm,則此款雪球夾制作的雪球的直徑AB的長(zhǎng)度為________ cm(結(jié)果保留一位小數(shù).參考數(shù)據(jù):sin15°≈026,cos15°≈097tan15°≈027)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)APCDF點(diǎn),

1)求證:△CBE≌△CPE;

2)求證:四邊形AECF為平行四邊形;

3)若矩形ABCD的邊AB6BC4,求△CPF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD是△ABC的中線,AEBC,射線BEAD于點(diǎn)F,交⊙O于點(diǎn)G,點(diǎn)FBE的中點(diǎn),連接CE.

(1)求證:四邊形ADCE為平行四邊形;

(2)若BC=2AB,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形Ⅰ的面積為6,矩形Ⅱ中的三條邊總長(zhǎng)為6,則下列說法不正確的是( 。

A.矩形Ⅰ中一組鄰邊的長(zhǎng)滿足反比例函數(shù)關(guān)系

B.矩形Ⅰ中一組鄰邊的長(zhǎng)可能是3+3

C.矩形Ⅰ的周長(zhǎng)不可能是8

D.矩形Ⅱ的最大面積是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線yx+4與拋物線y=﹣x2+bx+cb,c是常數(shù))交于AB兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)By軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C

1)求該拋物線的解析式;

2P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),

①如圖2,若點(diǎn)P在直線AB上方,連接OPAB于點(diǎn)D,求的最大值;

②如圖3,若點(diǎn)Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)EF恰好落在y軸上,直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案