【題目】先閱讀下列的解答過(guò)程,然后再解答:

形如的化簡(jiǎn),只要我們找到兩個(gè)正數(shù)a、b,使a+bm,abn,使得,那么便有:ab

例如:化簡(jiǎn)

解:首先把化為,這里m7,n12,由于4+37,4×312

=

1)填空:   ,   ;

2)化簡(jiǎn):

【答案】1 ;(2

【解析】

1)化簡(jiǎn)時(shí),根據(jù)范例確定a,b值為31,化簡(jiǎn)時(shí),根據(jù)范例確定a,b值為45,再根據(jù)范例求解.2)化簡(jiǎn)時(shí),根據(jù)范例確定a,b值為154,再根據(jù)范例求解.

解:(1)在中,m=4,n=3,由于3+1=4,3×1=3

,

=

首先把化為,這里m9,n20,由于4+59,4×520

,

=

2)首先把化為,這里m19,n60,由于15+419,15×460

,

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做等高底三角形,這條邊叫做這個(gè)三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請(qǐng)說(shuō)明理由.

(2)問(wèn)題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對(duì)稱(chēng)圖形得到A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點(diǎn)A在直線l2上,有一邊的長(zhǎng)是BC倍.將ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點(diǎn)D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊三角形ABC 中,BD是角平分線,點(diǎn)EBC邊的延長(zhǎng)線上,且CD=CE,則∠BDE的度數(shù)是(

A.90°B.100°C.120°D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:某商場(chǎng)經(jīng)市場(chǎng)調(diào)查,預(yù)計(jì)一款夏季童裝能獲得市場(chǎng)青睞,便花費(fèi)15000元購(gòu)進(jìn)了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進(jìn)貨,由于第二批進(jìn)貨數(shù)量是第一批進(jìn)貨數(shù)量的2倍,因此單價(jià)便宜了10元,購(gòu)進(jìn)第二批童裝一共花費(fèi)了27000元.那該店所購(gòu)進(jìn)的第一批童裝的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說(shuō)法正確的個(gè)數(shù)是( )

①拋物線與x軸的一個(gè)交點(diǎn)為(﹣2,0);②拋物線與y軸的交點(diǎn)為(0,6);

③拋物線的對(duì)稱(chēng)軸是x=1;④在對(duì)稱(chēng)軸左側(cè)yx增大而增大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)是點(diǎn)A(3,0),其部分圖象如圖,則下列結(jié)論:

2a+b=0;

b2﹣4ac<0;

③一元二次方程ax2+bx+c=0(a≠0)的另一個(gè)解是x=﹣1;

④點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<0<x2,則y1<y2

其中正確的結(jié)論是_____(把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,BAC=120°,ADBC于點(diǎn)D,點(diǎn)PBA延長(zhǎng)線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,下面的結(jié)論: ①∠APO+DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;SABC=S四邊形AOCP其中正確的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)七年級(jí)學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲五類(lèi)電視節(jié)目的喜愛(ài)情況,從該地區(qū)隨機(jī)抽取部分七年級(jí)學(xué)生作為樣本,采用問(wèn)卷調(diào)查的方法收集數(shù)據(jù)(參與問(wèn)卷調(diào)查的每名同學(xué)只能選擇其中一類(lèi)節(jié)目),并調(diào)查得到的數(shù)據(jù)用下面的表和扇形圖來(lái)表示(表、圖都沒(méi)制作完成)

根據(jù)表、圖提供的信息,解決以下問(wèn)題:

(1)計(jì)算出表中a、b的值;

(2)求扇形統(tǒng)計(jì)圖中表示“動(dòng)畫(huà)”部分所對(duì)應(yīng)的扇形的圓心角度數(shù);

(3)若該地區(qū)七年級(jí)學(xué)生共有47500人,試估計(jì)該地區(qū)七年級(jí)學(xué)生中喜愛(ài)“新聞”類(lèi)電視節(jié)目的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=120°OP平分∠AOB,且OP=2,若點(diǎn)M,N分別在OAOB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有(

A.2個(gè)B.3個(gè)C.4個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案