【題目】如圖,在中,于點(diǎn)E,于點(diǎn)D;點(diǎn)F是AB的中點(diǎn),連結(jié)DF,EF,設(shè),,則
A. B. C. D.
【答案】B
【解析】
由直角三角形斜邊的中線等于斜邊的一半可的AF=DF,BF=EF,從而由等腰三角形的性質(zhì)得∠ADF=∠DAF,∠EBF=∠BEF,然后根據(jù)三角形外角的性質(zhì)和三角形外角的性質(zhì)可求得結(jié)論.
∵于點(diǎn)E,于點(diǎn)D;點(diǎn)F是AB的中點(diǎn),
∴AF=DF,BF=EF,
∴∠ADF=∠DAF,∠EBF=∠BEF,
∵∠AFD+∠DFE=∠EBF+∠BEF=2∠EBF,∠BFE+∠DFE=∠DAF+∠ADF=2∠DAF,
∠AFD+∠DFE+∠BFE+∠DFE
=2∠EBF+2∠DAF
=2(∠EBF+∠DAF)
= 2(180°-∠C)
=360°-2∠C,
∴180°+∠DFE=360°-2∠C,
∴180°+x=360°-2y,
∴.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線AB的方向平移2個單位到△DEF的位置,點(diǎn)A、B、C的對應(yīng)點(diǎn)分別點(diǎn)D、E、F.
(1)直接寫出圖中與AD相等的線段.
(2)若AB=3,則AE=______.
(3)若∠ABC=75°,求∠CFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=6,將△ABC繞點(diǎn)C按逆時針方向旋轉(zhuǎn)得到△A1B1C,使CB1∥AD,分別延長AB、CA1相交于點(diǎn)D,則線段BD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
一般地,當(dāng)α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)= .
例如:tan15°=tan(45°﹣30°)= = =
= = =2﹣ .
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實(shí)心石塔(圖1),小華想用所學(xué)知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù) ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)M為邊AD的中點(diǎn),過點(diǎn)C作AB的垂線交AB于點(diǎn)E,連接ME,已知AM=2AE=4,∠BCE=30°.
(1)求平行四邊形ABCD的面積S;
(2)求證:∠EMC=2∠AEM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,DE∥BC,BE與CD交于點(diǎn)O,AO與DE,BC交于N、M,則下列式子中錯誤的是( )
A. =
B. =
C. =
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,已知DE⊥AC,BF⊥AC,垂足分別是E、F,AE=CF,DC∥AB,
(1)試證明:DE=BF;
(2)連接DF,BE,猜想DF與BE的關(guān)系?并證明你的猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON=30°.公路PQ上A處距O點(diǎn)240米.如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,A處受噪音影響的時間為( 。
A. 12秒 B. 16秒 C. 20秒 D. 30秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°,將求∠AGD的過程填寫完整;
解:∵EF∥AD
∴ =∠3 (兩直線平行,同位角相等)
又∵∠1=∠2
∴∠1=∠3 (__________________)
∴ ∥DG (__________________________)
∴∠BAC+______=180°(_________________________)
∵∠BAC=70°
∴∠AGD=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com