【題目】如圖,將△ABC沿射線AB的方向平移2個單位到△DEF的位置,點A、BC的對應點分別點D、EF

(1)直接寫出圖中與AD相等的線段.

(2)AB3,則AE______

(3)若∠ABC75°,求∠CFE的度數(shù).

【答案】(1)BE,CF;(2)5;(3)CFE105°

【解析】

(1)直接利用平移的性質得出相等線段;

(2)直接平移的性質得出BE的長,進而得出答案;

(3) 由平移變換的性質得:BC∥EF,AE∥CF,再根據平行線的性質即可得到∠CFE的度數(shù).

解:(1)AD相等的線段有:BE,CF;

(2)∵AB3,將△ABC沿射線AB的方向平移2個單位到△DEF的位置,

∴BE2,

AEBE+AB5

故答案為:5;

(3)∵由平移變換的性質得:BC∥EFAE∥CF,

∴∠E∠ABC75°,

∴∠CFE+∠E180°

∴∠CFE105°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,AB=AC,∠BAC=120°,DBC的中點,DE⊥ABE,求EB:EA的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關系如圖所示.請你根據圖象提供的信息完成以下問題:

(1)求降價前銷售金額y()與售出西瓜x(千克)之間的函數(shù)關系式.

(2)小明從批發(fā)市場共購進多少千克西瓜?

(3)小明這次賣瓜賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖等邊三角形 ABC 的邊長為 3,過點 B 的直線 l⊥AB,且△ABC △A′BC′關于直線 l 對稱,D 為線段 BC′上一動點,則 AD+CD 的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為等邊三角形,∠BAD=ACF=CBE,求∠DEC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線c1:y=ax2﹣4a+4(a<0)經過第一象限內的定點P

(1)直接寫出點P的坐標;
(2)若a=﹣1,如圖1,點M的坐標為(2,0)是x軸上的點,N為拋物線c1上的點,Q為線段MN的中點,設點N在拋物線c1上運動時,Q的運動軌跡為拋物線c2 , 求拋物線c2的解析式;
(3)直線y=2x+b與拋物線c1相交于A、B兩點,如圖2,直線PA、PB與x軸分別交于D、C兩代女.當PD=PC時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】賽龍舟是端午節(jié)的主要習俗,某市甲乙兩支龍舟隊在端午節(jié)期間進行劃龍舟比賽,從起點A駛向終點B,在整個行程中,龍舟離開起點的距離y(米)與時間x(分鐘)的對應關系如圖所示,請結合圖象解答下列問題:

(1)起點A與終點B之間相距多遠?
(2)哪支龍舟隊先出發(fā)?哪支龍舟隊先到達終點?
(3)分別求甲、乙兩支龍舟隊的y與x函數(shù)關系式;
(4)甲龍舟隊出發(fā)多長時間時兩支龍舟隊相距200米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.

(1)求證:CE∥GF;

(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;

(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,于點E,于點D;點FAB的中點,連結DF,EF,設,,則  

A. B. C. D.

查看答案和解析>>

同步練習冊答案