【題目】旭日商場銷售A,B兩種品牌的鋼琴,這兩種鋼琴的進(jìn)價(jià)和售價(jià)如下表所示:

A

B

進(jìn)價(jià)(萬元/.套)

1.5

1.2

售價(jià)(萬元/套)

1.65

1.4

該商場計(jì)劃購進(jìn)兩種鋼琴若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)A,B兩種品牌的鋼琴各多少套?
(2)通過市場調(diào)查,該商場決定在原計(jì)劃的基礎(chǔ)上,減少A種鋼琴的購進(jìn)數(shù)量,增加B種鋼琴的購進(jìn)數(shù)量,已知B種鋼琴增加的數(shù)量是A種鋼琴減少數(shù)量的1.5倍,若用于購進(jìn)這兩種鋼琴的總資金不超過69萬元,問A種鋼琴購進(jìn)數(shù)量至多或減少多少套?

【答案】
(1)解:設(shè)該商場計(jì)劃購進(jìn)A種品牌的鋼琴x套,B種品牌的鋼琴y套,依題意有

,解得:

答:該商場計(jì)劃購進(jìn)A種品牌的鋼琴20套,B種品牌的鋼琴30套


(2)解:設(shè)A種鋼琴購進(jìn)數(shù)量減少a套,則B種鋼琴購進(jìn)數(shù)量增加1.5a套,

1.5(20﹣a)+1.2(30+1.5a)≤69,

解得:a≤10.

答:A種鋼琴購進(jìn)數(shù)量至多減少10套


【解析】(1)首先設(shè)該商場計(jì)劃購進(jìn)A種品牌的鋼琴x套,B種品牌的鋼琴y套,根據(jù)題意即可列方程組 ,解此方程組即可求得答案;(2)首先設(shè)A種鋼琴購進(jìn)數(shù)量減少a套,則B種鋼琴購進(jìn)數(shù)量增加1.5a套,根據(jù)題意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式組即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E為AD的中點(diǎn),異面直線AP與CD所成的角為90°.
(Ⅰ)證明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小為45°,求二面角A﹣PE﹣C的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+mx的對稱軸是x=3,則關(guān)于x的方程x2+mx=7的解為( 。
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關(guān)于點(diǎn)D的說法正確的是( )
甲:點(diǎn)D在第一象限
乙:點(diǎn)D與點(diǎn)A關(guān)于原點(diǎn)對稱
丙:點(diǎn)D的坐標(biāo)是(﹣2,1)
。狐c(diǎn)D與原點(diǎn)距離是
A.甲乙
B.丙丁
C.甲丁
D.乙丙

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB經(jīng)過平移得到線段A′B′,其中點(diǎn)A,B的對應(yīng)點(diǎn)分別為點(diǎn)A′,B′,這四個(gè)點(diǎn)都在格點(diǎn)上,則這四個(gè)點(diǎn)組成的四邊形ABB′A′的面積是( )

A.4
B.6
C.9
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1) ﹣101+ ﹣5sin30°+(3.14﹣π)0
(2)已知m2﹣5=3m,求代數(shù)式2m2﹣6m﹣1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司銷售部為了定制下個(gè)月的銷售計(jì)劃,對20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是(
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動(dòng),第二層有兩枚固定不動(dòng)的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動(dòng),甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是
(2)若甲、乙均可在本層移動(dòng).
①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家新開發(fā)的一種摩托車如圖所示,它的大燈A射出的光線AB、AC與地面MN的夾角分別為8°和10°,大燈A離地面距離1m.
(1)該車大燈照亮地面的寬度BC約是多少(不考慮其它因素)?
(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到摩托車完全停下所行駛的距離叫做最小安全距離,某人以60km/h的速度駕駛該車,從60km/h到摩托車停止的剎車距離是 m,請判斷該車大燈的設(shè)計(jì)是否能滿足最小安全距離的要求,請說明理由.參考數(shù)據(jù):sin8°≈ ,tan8°≈ ,sin10°≈ ,tan10°≈

查看答案和解析>>

同步練習(xí)冊答案