【題目】如圖,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB.
(1)求∠ACE的度數(shù).
(2)若CD⊥AB于點D,∠CDF=75°,求證:△CFD是直角三角形.
【答案】(1)∠ACE=45°;(2)詳見解析.
【解析】
(1)先根據(jù)內(nèi)角和定理求得∠ACB=90°,再由角平分線性質(zhì)可得答案;
(2)根據(jù)CD⊥AB知∠BCD=90°-∠B=30°,∠FCD=∠ECB-∠BCD=15°,結(jié)合∠CDF=75°可得∠CFD=180°-∠FCD-∠CDF=90°,即可得證.
解:(1)∵∠A=30°,∠B=60°,
∴∠ACB=180°-∠A-∠B=90°,
∵CE平分∠ACB,
∴∠ACE=∠BCE=∠ACB=45°;
(2)∵CD⊥AB,
∴∠CDB=90°,
∴∠BCD=90°-∠B=30°,
∴∠FCD=∠ECB-∠BCD=15°,
∵∠CDF=75°,
∴∠CFD=180°-∠FCD-∠CDF=90°,
∴△CFD是直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)有( )
①垂線段最短;
②一對內(nèi)錯角的角平分線互相平行;
③平面內(nèi)的n條直線最多有個交點;
④若,則;
⑤平行于同一直線的兩條直線互相平行,垂直于同一直線的兩條直線也互相平行.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結(jié)CE,DF,下列說法不正確的是
A. 四邊形CEDF是平行四邊形
B. 當(dāng)時,四邊形CEDF是矩形
C. 當(dāng)時,四邊形CEDF是菱形
D. 當(dāng)時,四邊形CEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫出AB+AC與AE之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間的高速公路全長200千米,比原來國道的長度減少了20千米.高速公路通車后,某長途汽車的行駛速度提高了45千米/時,從甲地到乙地的行駛時間縮短了一半,求長途汽車在原來國道上行駛的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD和正方形EFGH的中心重合,,,分別延長FE,GF,HG和EH交AB,BC,CD,AD于點I,J,K,若,則AI的長為______,四邊形AIEL的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式,
解:∵,∴可化為,
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,有
(1)或(2)
解不等式組(1),得,解不等式組(2),得,
故的解集為或,
即一元二次不等式的解集為或.
問題:(1)一元二次不等式的解集為______.
(2)求分式不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應(yīng)點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com