【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1) (1)A(2,0);C(0,4);(2) 直線CD解析式為y=-x+4.(3)P1(0,0);P2(,);P3(-,).
【解析】
試題分析:(1)已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,即可求得A和C的坐標(biāo);
(2)根據(jù)題意可知△ACD是等腰三角形,算出AD長即可求得D點(diǎn)坐標(biāo),最后即可求出CD的解析式;
(3)將點(diǎn)P在不同象限進(jìn)行分類,根據(jù)全等三角形的判定方法找出所有全等三角形,找出符合題意的點(diǎn)P的坐標(biāo).
試題解析:(1)A(2,0);C(0,4)
(2)由折疊知:CD=AD.設(shè)AD=x,則CD=x,BD=4-x,
根據(jù)題意得:(4-x)2+22=x2解得:x=
此時(shí),AD=,D(2,)
設(shè)直線CD為y=kx+4,把D(2,)代入得=2k+4
解得:k=-
∴該直線CD解析式為y=-x+4.
(3)①當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),△APC≌△CBA,此時(shí)P(0,0)
②當(dāng)點(diǎn)P在第一象限時(shí),如圖,
由△APC≌△CBA得∠ACP=∠CAB,
則點(diǎn)P在直線CD上.過P作PQ⊥AD于點(diǎn)Q,
在Rt△ADP中,
AD=,PD=BD=4-=,AP=BC=2
由AD×PQ=DP×AP得:PQ=3
∴PQ=
∴xP=2+=,
把x=代入y=-x+4得y=
此時(shí)P(,)
(也可通過Rt△APQ勾股定理求AQ長得到點(diǎn)P的縱坐標(biāo))
③當(dāng)點(diǎn)P在第二象限時(shí),如圖
同理可求得:CQ=
∴OQ=4-=
此時(shí)P(-,)
綜合得,滿足條件的點(diǎn)P有三個(gè),
分別為:P1(0,0);P2(,);P3(-,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,△AEF是等邊三角形,E,F(xiàn)分別位于DC邊和BC邊上.
(1)求∠DAE的度數(shù);
(2)若正方形ABCD的邊長為1,求等邊三角形AEF的面積;
(3)將△AEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn)m(0<m<180)度,使得點(diǎn)A落在正方形ABCD的邊上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一分鐘投籃測試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學(xué)的一次測試成績?nèi)缦拢?
成績(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請你根據(jù)上述統(tǒng)計(jì)數(shù)據(jù),把下面的圖和表補(bǔ)充完整;
一分鐘投籃成績統(tǒng)計(jì)分析表:
統(tǒng)計(jì)量 | 平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 | 2.56 | 6 | 80.0% | 26.7% | |
乙組 | 6.8 | 1.76 | 86.7% | 13.3% |
(2)下面是小明和小聰?shù)囊欢螌υ挘埬愀鶕?jù)(1)中的表,寫出兩條支持小聰?shù)挠^點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,連接AC,拋物線y=x2﹣4x﹣2經(jīng)過A,B兩點(diǎn).
(1)求A點(diǎn)坐標(biāo)及線段AB的長;
(2)若點(diǎn)P由點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB邊向點(diǎn)B移動,1秒后點(diǎn)Q也由點(diǎn)A出發(fā)以每秒7個(gè)單位的速度沿AO,OC,CB邊向點(diǎn)B移動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動,點(diǎn)P的移動時(shí)間為t秒.
①當(dāng)PQ⊥AC時(shí),求t的值;
②當(dāng)PQ∥AC時(shí),對于拋物線對稱軸上一點(diǎn)H,∠HOQ>∠POQ,求點(diǎn)H的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長春市地鐵1號線,北起北環(huán)站,南至紅咀子站,共設(shè)15個(gè)地下車站,2017年6月30日開通運(yùn)營,標(biāo)志著吉林省正式邁進(jìn)“地鐵時(shí)代”,15個(gè)站點(diǎn)如圖所示.
某天,王紅從人民廣場站開始乘坐地鐵,在地鐵各站點(diǎn)做志愿者服務(wù),到A站下車時(shí),本次志愿者服務(wù)活動結(jié)束,約定向紅咀子站方向?yàn)檎,?dāng)天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8
(1)請通過計(jì)算說明A站是哪一站?
(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進(jìn)的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖象經(jīng)過點(diǎn)A(-6,4),B(3,0).
(1)求這個(gè)函數(shù)的解析式;
(2)畫出這個(gè)函數(shù)的圖象;
(3)若該直線經(jīng)過點(diǎn)(9,m),求m的值;
(4)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)用含、的代數(shù)式表示地面總面積;
(2)若=5,=,鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長;
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為 ,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成2017年6月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com