【題目】如圖1,在矩形ABCD,動點EA出發(fā),沿方向運動,當點E到達點C時停止運動,過點E,CDF,設點E運動路程為x, ,如圖2所表示的是yx的函數(shù)關系的大致圖象,當點EBC上運動時,FC的最大長度是,則矩形ABCD的面積是( )

A. B. C. 6 D. 5

【答案】B

【解析】由圖象可知AB=當點EBC上時如圖

∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,

∴∠AEB=∠EFC,

∵∠C=∠B=90°,

∴△CFE∽△BEA,

,

BE=CE=x-,

FC 的最大長度是,

,代入解析式,解得(舍去),

∴BE=CE=1,

∴BC=2,AB=,

矩形ABCD的面積為=5.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交ABCD邊于點E,F

1)求證:四邊形BEDF是平行四邊形;(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EF在對角線BD上,且BFDE

求證:四邊形AECF是菱形.

AB2,BF1,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)證明四邊形ADCF是菱形;

(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1分別與x軸、y軸交于點B、C,且與直線l2交于點A.

(1)求出點A的坐標

(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式

(3)在(2)的條件下,設P是射線CD上的點,在平面內是否存在點Q,使以O、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBCACAB,AB3,ACCD2

1)求BC的長;

2)求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD交于點O,∠COF90°,OC平分∠AOE,∠COE40°

1)求∠BOD的度數(shù);

2OF平分∠BOE嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在體育局的策劃下,市體育館將組織明星籃球賽,為此體育局推出兩種購票方案(設購票張數(shù)為x,購票總價為y):

方案一:提供8000元贊助后,每張票的票價為50元;

方案二:票價按圖中的折線OAB所表示的函數(shù)關系確定.

1)若購買120張票時,按方案一和方案二分別應付的購票款是多少?

2)求方案二中yx的函數(shù)關系式;

3)至少買多少張票時選擇方案一比較合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】福建省教育廳日前發(fā)布文件,從2019年開始,體育成績將按一定的原始分計入中考總分。某校為適應新的中考要求,決定為體育組添置一批體育器材。學校準備在網(wǎng)上訂購一批某品牌足球和跳繩,在查閱天貓網(wǎng)店后發(fā)現(xiàn)足球每個定價150元,跳繩每條定價30元.現(xiàn)有A、B兩家網(wǎng)店均提供包郵服務,并提出了各自的優(yōu)惠方案.

A網(wǎng)店:買一個足球送一條跳繩;

B網(wǎng)店:足球和跳繩都按定價的90%付款.

已知要購買足球40個,跳繩x條(x>40)

(1)若在A網(wǎng)店購買,需付款 元(用含x的代數(shù)式表示).

若在B網(wǎng)店購買,需付款 元(用含x的代數(shù)式表示).

(2)若x=100時,通過計算說明此時在哪家網(wǎng)店購買較為合算?

(3)當x=100時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,

并計算需付款多少元?

查看答案和解析>>

同步練習冊答案