如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.

(1)求拋物線的解析式;

(2)求點D的坐標(biāo);

(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

 

【答案】

解:(1)設(shè)拋物線頂點為E,根據(jù)題意OA=4,OC=3,得:E(2,3)。

設(shè)拋物線解析式為,

將A(4,0)坐標(biāo)代入得:0=4a+3,即

∴拋物線解析式為。

 (2)設(shè)直線AC解析式為(k≠0),

將A(4,0)與C(0,3)代入得:,解得:

∴直線AC解析式為。

與拋物線解析式聯(lián)立得:,解得:。

∴點D坐標(biāo)為(1,)。

(3)存在,分兩種情況考慮:

①當(dāng)點M在x軸上方時,如圖1所示:

四邊形ADMN為平行四邊形,DM∥AN,DM=AN,

由對稱性得到M(3,),即DM=2,故AN=2,

∴N1(2,0),N2(6,0)。

②當(dāng)點M在x軸下方時,如圖2所示:

過點D作DQ⊥x軸于點Q,過點M作MP⊥x軸于點P,可得△ADQ≌△NMP,

∴MP=DQ=,NP=AQ=3。

將yM=代入拋物線解析式得:

,

解得:xM=或xM=。

∴xN=xM-3=

∴N3,0),N4,0)。

綜上所述,滿足條件的點N有四個:

N1(2,0),N2(6,0),N3,0),N4,0)。

【解析】

試題分析:(1)由OA的長度確定出A的坐標(biāo),再利用對稱性得到頂點坐標(biāo),設(shè)出拋物線的頂點形式,將A的坐標(biāo)代入求出a的值,即可確定出拋物線解析式;。

(2)設(shè)直線AC解析式為y=kx+b,將A與C坐標(biāo)代入求出k與b的值,確定出直線AC解析式,與拋物線解析式聯(lián)立即可求出D的坐標(biāo)。

(3)存在,分兩種情況考慮:如圖所示,當(dāng)四邊形ADMN為平行四邊形時,DM∥AN,DM=AN,由對稱性得到M(3,),即DM=2,故AN=2,根據(jù)OA+AN求出ON的長,即可確定出N的坐標(biāo);當(dāng)四邊形ADM′N′為平行四邊形,可得△ADQ≌△NMP,MP=DQ=,NP=AQ=3,將y=代入得:,求出x的值,確定出OP的長,由OP+PN求出ON的長即可確定出N坐標(biāo)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC在平面直角坐標(biāo)系中,若OA、OC的長滿足|OA-2|+(OC-2
3
)2=0

(1)求B、C兩點的坐標(biāo);
(2)把△ABC沿AC對折,點B落在點B′處,線段AB′與x軸交于點D,求直線BB′的解析式;
(3)在直線BB′上是否存在點P,使△ADP為直角三角形?若存在,請直接寫出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,OA=3,AB=2.拋物線y=ax2+bx+c(a≠0)經(jīng)過點A和點B,與x軸分別交于點D、E(點D在點E左側(cè)),且OE=1,則下列結(jié)論:
①a>0;②c>3;③2a-b=0;④4a-2b+c=3;⑤連接AE、BD,則S梯形ABDE=9.
其中正確結(jié)論的個數(shù)為( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昆明)如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.
(1)求拋物線的解析式;
(2)求點D的坐標(biāo);
(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浙江二模)如圖,矩形OABC在平面直角坐標(biāo)系中,A(0,3),C(4,0),點P為直線AB上一動點,將直線OP繞點P逆時針方向旋轉(zhuǎn)90°交直線BC于點Q,當(dāng)△POQ為等腰三角形時,點P坐標(biāo)為
P1(1,3),P2(7,3)
P1(1,3),P2(7,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•淮安)如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉(zhuǎn)135°,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM=
45
45
°,OM=
2
2
2
2
;
(2)將矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當(dāng)0<t≤4
2
-2時,S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案