【題目】老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個二次三項式,形式如下:
﹣3x=x2﹣5x+1
(1)求所捂的二次三項式;
(2)若x=+1,求所捂二次三項式的值;
(3)如果 +1的整數(shù)部分為a,則a2= .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣ x+4與x軸、y軸分別交于點A、B,點C從點B出發(fā),以每秒5個單位長度的速度向點A勻速運動;同時點D從點O出發(fā),以每秒4個單位長度的速度向點B勻速運動,到達終點后運動立即停止.連接CD,取CD的中點E,過點E作EF⊥CD,與折線DO﹣OA﹣AC交于點F,設(shè)運動時間為t秒.
(1)點C的坐標為(用含t的代數(shù)式表示);
(2)求證:點E到x軸的距離為定值;
(3)連接DF、CF,當△CDF是以CD為斜邊的等腰直角三角形時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,過原點O及點A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒 個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設(shè)移動時間為t秒.
(1)當點P移動到點D時,求出此時t的值;
(2)當t為何值時,△PQB為直角三角形;
(3)已知過O、P、Q三點的拋物線解析式為y=﹣ (x﹣t)2+t(t>0).問是否存在某一時刻t,將△PQB繞某點旋轉(zhuǎn)180°后,三個對應(yīng)頂點恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△AOB為等邊三角形,B(2,0),直線l:y=kx+b經(jīng)過點B,點C是x軸正半軸上的一動點,以線段AC為邊在第一象限作等邊△ACD.
(1)直接寫出點A的坐標:A( , ),當直線l經(jīng)過點A時,求直線BA的表達式.
(2)當直線l經(jīng)過點D時,直線與y軸相交于點F,隨著點C的變化,點F的位置是否發(fā)生變化?若沒有變化,求出此時點F的坐標.;若有變化,請說明理由.
(3)當直線與線段OA相交與點E時,如果直線l把△AOB的面積分為1:2兩部分,求出此時點E的坐標.
(4)若點C的坐標為(4,0)時,直線l與線段AD有交點,請直接寫出此時k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,在△ABC外側(cè)作直線CP,點A關(guān)于直線CP的對稱點為D,連接AD,BD,其中BD交直線CP于點E.
(1)如圖1,∠ACP=15°.
①依題意補全圖形;
②求∠CBD的度數(shù);
(2)如圖2,若45°<∠ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為( )
A.2.3
B.2.4
C.2.5
D.2.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設(shè)計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com