【題目】如圖,正六邊形ABCDEF的邊長是6+4,點O1,O2分別是△ABF,△CDE的內(nèi)心,則O1O2=_____.
【答案】9+4
【解析】如圖,設(shè)△AFB的內(nèi)切圓的半徑為r,過A作AM⊥BF于M,連接O1F、O1A、O1B,解直角三角形求出AM、FM、BM,根據(jù)三角形的面積求出r,即可求出答案.
如圖,過A作AM⊥BF于M,連接O1F、O1A、O1B,
∵六邊形ABCDEF是正六邊形,
∴∠A==120°,AF=AB,
∴∠AFB=∠ABF=×(180°﹣120°)=30°,
∴△AFB邊BF上的高AM=AF=×(6+4)=3+2,
FM=BM=AM=3+6,
∴BF=3+6+3+6=12+6,
設(shè)△AFB的內(nèi)切圓的半徑為r,
∵S△AFB=,
∴×(3+2)×(3+6)
=×(6+4)×r+×(6+4)×r+×(12+6)×r,
解得:r=,
即O1M=r=,
∴O1O2=2×+6+4=9+4,
故答案為:9+4.
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC=90°,AB=AC,∠B =∠ACB=45°, AE⊥AD,且AE=AD,若AB=6cm,則四邊形ADCE的面積為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( )
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】讀圖,回答問題
(1)在線段上取一點,共有 條線段;
(2)在線段上取兩點,共有 條線段;
(3)在線段上取三點,共有 條線段;
(4)在線段上取個點,共有 條線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣3x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c與直線y=c分別交y軸的正半軸于點C和第一象限的點P,連接PB,得△PCB≌△BOA(O為坐標原點).若拋物線與x軸正半軸交點為點F,設(shè)M是點C,F(xiàn)間拋物線上的一點(包括端點),其橫坐標為m.
(1)直接寫出點P的坐標和拋物線的解析式;
(2)當m為何值時,△MAB面積S取得最小值和最大值?請說明理由;
(3)求滿足∠MPO=∠POA的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BA1和CA1分別是△ABC的內(nèi)角平分線和外角平分線,BA2是∠A1BD的角平分線CA2是∠A1CD的角平分線,BA3是∠A2BD的角平分線,CA3是∠A2CD的角平分線,……,若∠A1=α,則∠A2019為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建文明城市,一輛城管汽車在一條東西方向的公路上巡邏.如果規(guī)定向東為正,向西為負,從出發(fā)點開始它所行走的記錄為(長度單位:千米):.
(1)此時這輛城管汽車的司機應(yīng)如何向隊長描述他的位置?
(2)如果隊長命令他馬上返回出發(fā)點,那么這次巡邏(含返回)共耗油多少升(已知每千米耗油升)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com