【題目】同時(shí)滿足不等式-2x≤812x-8<3x-8x的整數(shù)解是________.

【答案】-1,-2,-3,-4

【解析】

分別求出每一個(gè)不等式的解集,然后再確定它們的公共解,繼而可得符合題意的整數(shù)解.

解不等式-2x≤8得:x≥-4,

解不等式12x-8<3x-8得:x<0,

所以這兩個(gè)不等式的公共解為:-4≤x<0,

所以滿足條件的整數(shù)解為:-1,-2,-3,-4,

故答案為:-1,-2,-3,-4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,E、F分別在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一點(diǎn),且∠BGD=120°,連接EF、BG、FG、EF、BG交于點(diǎn)H,則下面結(jié)論:①DE=DF;②△BEF是等邊三角形;③∠BGF=45°;④BG=EG+FG中,正確的是(請?zhí)罘枺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)C在線段AB上,以AC和BC為邊在AB的同側(cè)作正三角形△ACM和△BCN,連結(jié)AN、BM,分別交CM、CN于點(diǎn)P、Q.求證:PQ∥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a>-2,若當(dāng)1≤x≤2時(shí),函數(shù)y (a≠0)的最大值與最小值之差是1,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為一個(gè)污水凈化塔內(nèi)部,污水從上方入口進(jìn)入后,流經(jīng)形如等腰直角三角形的凈化材枓表面,流向如圖中箭頭所示,每一次水流流經(jīng)三角形兩腰的機(jī)會相同,經(jīng)過四層凈化后流入底部的5個(gè)出口中的一個(gè).下列判斷:①5個(gè)出口的出水量相同;②2號出口的出水量與4號出口的出水量相同;③12,3號出水口的出水量之比約為146;④若凈化材枓損耗的速度與流經(jīng)其表面水的數(shù)量成正比,則更換最慢的一個(gè)三角形材枓使用的時(shí)間約為更換最快的一個(gè)三角形材枓使用時(shí)間的8倍.其中正確的判斷有(。﹤(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCA'B'C'關(guān)于直線l對稱.

(1)ABC____A'B'C';

(2)A點(diǎn)的對應(yīng)點(diǎn)是____,C'點(diǎn)的對應(yīng)點(diǎn)是____;

(3)連接BB'l于點(diǎn)M,連接AA'l于點(diǎn)N,BM=____,AA'BB'的位置關(guān)系是____;

(4)直線l____AA'.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD沿EF折疊,使點(diǎn)A與點(diǎn)C重合,點(diǎn)D落在點(diǎn)G,EF為折痕.

(1)試說明:FGC≌△EBC;

(2)AB=8,AD=4,求四邊形ECGF(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.

(1)從小剛家到該景區(qū)乘車一共用了多少時(shí)間?

(2)求線段AB對應(yīng)的函數(shù)解析式;

(3)小剛一家出發(fā)2.5小時(shí)時(shí)離目的地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察圖形,回答下列各題:

(1)圖A中,共有____對對頂角;

(2)圖B中,共有____對對頂角;

(3)圖C中,共有____對對頂角;

(4)探究(1)--(3)各題中直線條數(shù)與對頂角對數(shù)之間的關(guān)系,若有n條直線相交于一點(diǎn),則可形成________對對頂角;

查看答案和解析>>

同步練習(xí)冊答案