【題目】勾股定理是一個(gè)基本的幾何定理,早在我國(guó)西漢吋期算書(shū)《周髀算經(jīng)》就有“勾三股四弦五”的記載.如果一個(gè)直角三角形三邊長(zhǎng)都是正整數(shù),這樣的直角三角形叫“整數(shù)直角三角形”;這三個(gè)整數(shù)叫做一組“勾股數(shù)”,如:3,45;5,1213;724,258,15,17;940,41等等都是勾股數(shù).

1)小李在研究勾股數(shù)時(shí)發(fā)現(xiàn),某些整數(shù)直角三角形的斜邊能寫(xiě)成兩個(gè)整數(shù)的平方和,有一條直角邊能寫(xiě)成這兩個(gè)整數(shù)的平方差.如34,5中,522+12322125,12,13中,1332+22,53222;請(qǐng)證明:mn為正整數(shù),且mn,若有一個(gè)直角三角形斜邊長(zhǎng)為m2+n2,有一條直角長(zhǎng)為m2n2,則該直角三角形一定為“整數(shù)直角三角形”;

2)有一個(gè)直角三角形兩直角邊長(zhǎng)分別為,斜邊長(zhǎng)4,且ab均為正整數(shù),用含b的代數(shù)式表示a,并求出ab的值;

3)若c1a12+b12c2a22+b22,其中,a1a2b1、b2均為正整數(shù).證明:存在一個(gè)整數(shù)直角三角形,其斜邊長(zhǎng)為c1c2

【答案】(1)見(jiàn)解析;(2)a31,b4;(3)見(jiàn)解析

【解析】

1)根據(jù)勾股定理:利用(m2+n22﹣(m2n22,解得另一條直角邊長(zhǎng)為2mn因?yàn)?/span>m,n為正整數(shù),所以2mn也為正整數(shù),即可得證;

2)首先根據(jù)勾股定理求出關(guān)于的代數(shù)式,再根據(jù)被開(kāi)方數(shù)需大于等于0,即可求得、的范圍,且、均為正整數(shù),將b的可能值:12,34分別代入,即可求得符合條件的正整數(shù);

(3)觀察發(fā)現(xiàn),當(dāng)a1b11,a2b22時(shí),c1c25×525,而,故存在.

1)證明:

∵(m2+n22﹣(m2n22,

=(m2+n2+m2n2)(m2+n2m2+n2),

2m22n2,

=(2mn2,

∴(2mn2+m2n22=(m2+n22,

mn為正整數(shù),且mn,

2mn,m2n2,m2+n2均為正整數(shù),

∴該直角三角形一定為“整數(shù)直角三角形”;

2)由勾股定理得:

7a7+15030b)=16×15,

由題意可知:7a70,15030b0,

a1,0b5

ab均為正整數(shù),

b的可能值為:1,23,4

當(dāng)b1時(shí), ,不是正整數(shù),故b1不符合題意;

當(dāng)b2時(shí),,不是正整數(shù),故b2不符合題意;

當(dāng)b3時(shí),,不是正整數(shù),故b3不符合題意;

當(dāng)b4時(shí),,是正整數(shù),此時(shí),

,

,

b4符合題意,

;a31,b4;

3)證明:觀察發(fā)現(xiàn),當(dāng)a1b11,a2b22時(shí),c1c25×525

152+202225+400625252625,

152+202252

∴存在一個(gè)整數(shù)直角三角形,其斜邊長(zhǎng)為c1c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)活動(dòng)中心為中老年舞蹈隊(duì)統(tǒng)一隊(duì)服和道具,準(zhǔn)備購(gòu)買 10 套某種品牌的舞蹈鞋,每雙舞蹈鞋配 xx≥2)個(gè)舞蹈扇,供舞蹈隊(duì)隊(duì)員使用.該社區(qū)附近 A,B 兩家超市都有這種品牌的舞蹈鞋和舞蹈扇出售,且每雙舞蹈鞋的標(biāo)價(jià)均為 30 元,每個(gè)舞蹈扇的標(biāo)價(jià)為 3 元,目前兩家超市同時(shí)在做促銷活動(dòng):

A 超市:所有商品均打九折(按標(biāo)價(jià)的 90%)銷售;

B 超市:買一雙舞蹈鞋送 2 個(gè)舞蹈扇.

設(shè)在 A 超市購(gòu)買舞蹈鞋和舞蹈扇的費(fèi)用為(元),在 B 超市購(gòu)買舞蹈鞋和舞蹈扇的費(fèi)用為 (元).請(qǐng)解答下列問(wèn)題:

1)分別寫(xiě)出 , x 之間的關(guān)系式;

2)若該活動(dòng)中心只在一家超市購(gòu)買,你認(rèn)為在哪家超市購(gòu)買更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)了二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如32 (1)2.善于思考的小明進(jìn)行了以下探索:

設(shè)ab(mn)2(其中a,b,m,n均為正整數(shù)),則有abm22n22mn.

am22n2,b2mn.這樣小明就找到了一種把部分形如ab的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)a,b,m,n均為正整數(shù)時(shí),若ab(mn)2,用含mn的式子分別表示ab,得a__________b__________

(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:________________(________________)2;

(3)a4(mn)2,且am,n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由邊長(zhǎng)為1的小正方形組成的網(wǎng)格,直線是一條網(wǎng)格線,點(diǎn)在格點(diǎn)上,的三個(gè)頂點(diǎn)都在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.

1)作出關(guān)于直線對(duì)稱的;

2)在直線上畫(huà)出點(diǎn),使四邊形的周長(zhǎng)最;

3)在這個(gè)網(wǎng)格中,到點(diǎn)和點(diǎn)的距離相等的格點(diǎn)有_________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為矩形,F為對(duì)角線BD上一點(diǎn),點(diǎn)EBA延長(zhǎng)線上.

1)如圖,若F為矩形對(duì)角線ACBD的交點(diǎn),點(diǎn)EBA延長(zhǎng)線上且BEAC,連接DE,MDE的中點(diǎn),連接BMFMAD6,FM,求線段AE的長(zhǎng);

2)如圖,過(guò)點(diǎn)FFEBDAD于點(diǎn)H,交BA延長(zhǎng)線于點(diǎn)E,連接AF,當(dāng)FDFE時(shí),求證:HA+ABAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yx2x3交軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D為點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn).

1)若點(diǎn)P是拋物線上位于直線AD下方的一個(gè)動(dòng)點(diǎn),在y軸上有一動(dòng)點(diǎn)Ex軸上有一動(dòng)點(diǎn)F,當(dāng)△PAD的面積最大時(shí),一動(dòng)點(diǎn)G從點(diǎn)P出發(fā)以每秒1個(gè)單位的速度沿PEF的路徑運(yùn)動(dòng)到點(diǎn)F,再沿線段FB以每秒2個(gè)單位的速度運(yùn)動(dòng)到B點(diǎn)后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),動(dòng)點(diǎn)G的運(yùn)動(dòng)過(guò)程中所用的時(shí)間最少?

2)如圖,在(1)問(wèn)的條件下,將拋物線沿直線PB進(jìn)行平移,點(diǎn)PB平移后的對(duì)應(yīng)點(diǎn)分別記為點(diǎn)P'、B',請(qǐng)問(wèn)在y軸上是否存在一動(dòng)點(diǎn)Q,使得△P'QB'為等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O分別切ABC的三條邊ABBC、CA于點(diǎn)D、EF,SABC=10cm2CABC=10cm且∠C=60°.求:

1O的半徑r;

2)扇形OEF的面積(結(jié)果保留π);

3)扇形OEF的周長(zhǎng)(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),點(diǎn)EBC的延長(zhǎng)線上,且PE=PB

1)當(dāng)PC=CE時(shí),求CDP的度數(shù);

2)試用等式表示線段PBBC、CE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1955年,印度數(shù)學(xué)家卡普耶卡()研究了對(duì)四位自然數(shù)的一種變換:任給出四位數(shù),用的四個(gè)數(shù)字由大到小重新排列成一個(gè)四位數(shù),再減去它的反序數(shù)(即將的四個(gè)數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計(jì)算時(shí)按1計(jì)算),得出數(shù),然后繼續(xù)對(duì)重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無(wú)論是多大的四位數(shù),只要四個(gè)數(shù)字不全相同,最多進(jìn)行次上述變換,就會(huì)出現(xiàn)變換前后相同的四位數(shù),這個(gè)數(shù)稱為變換的核.則四位數(shù)9631的變換的核為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案