【題目】如圖,已知⊙O分別切ABC的三條邊AB、BCCA于點(diǎn)D、E、FSABC=10cm2,CABC=10cm且∠C=60°.求:

1O的半徑r;

2)扇形OEF的面積(結(jié)果保留π);

3)扇形OEF的周長(zhǎng)(結(jié)果保留π

【答案】(1)2cm;(2)cm2;(3)(+4cm.

【解析】試題分析:(1)連接AO、BO、CO,根據(jù)SABC=SAOC+SAOB+SBOC即可求出⊙O的半徑;

2)因?yàn)?/span>OF⊥AC,OE⊥BC,∠C=60°可求出∠EOF的度數(shù),代入扇形面積計(jì)算公式即可求出扇形的面積;

3)利用扇形的周長(zhǎng)=扇形的弧長(zhǎng)+半徑×2,即可求出扇形的周長(zhǎng).

試題解析:(1)如圖,連接AO、BO、CO

SABC=SAOC+SAOB+SBOC

,

AB+BC+AC=10,

∴r=2cm;

2)因?yàn)?/span>OF⊥AC,OE⊥BC∠C=60°

所以∠EOF=120°

所以S扇形EOF=cm2

3)扇形EOF的周長(zhǎng)=cm.

考點(diǎn): 1.面積法;2.扇形面積計(jì)算;3.扇形弧長(zhǎng)計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】來(lái)自中國(guó)、美國(guó)、立陶宛、加拿大的四國(guó)青年男籃巔峰爭(zhēng)霸賽于2014325-27日在我縣體育館舉行。小明來(lái)到體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還在家里,此時(shí)離比賽開始還有25分鐘,于是立即步行回家取票.同時(shí),他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過(guò)程中,離體育館的路程S(米)與所用時(shí)間t(分鐘)之間的圖象,結(jié)合圖象解答下列問(wèn)題(假設(shè)騎自行車和步行的速度始終保持不變):

(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.

(2)求出父親與小明相遇時(shí)距離體育館還有多遠(yuǎn)?

(3)小明能否在比賽開始之前趕回體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6,AD8,矩形內(nèi)一動(dòng)點(diǎn)P使得SPADS矩形ABCD,則點(diǎn)P到點(diǎn)A、D的距離之和PA+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理是一個(gè)基本的幾何定理,早在我國(guó)西漢吋期算書《周髀算經(jīng)》就有“勾三股四弦五”的記載.如果一個(gè)直角三角形三邊長(zhǎng)都是正整數(shù),這樣的直角三角形叫“整數(shù)直角三角形”;這三個(gè)整數(shù)叫做一組“勾股數(shù)”,如:34,5;512,137,2425;815,17;940,41等等都是勾股數(shù).

1)小李在研究勾股數(shù)時(shí)發(fā)現(xiàn),某些整數(shù)直角三角形的斜邊能寫成兩個(gè)整數(shù)的平方和,有一條直角邊能寫成這兩個(gè)整數(shù)的平方差.如3,45中,522+12,32212;5,1213中,1332+22,53222;請(qǐng)證明:mn為正整數(shù),且mn,若有一個(gè)直角三角形斜邊長(zhǎng)為m2+n2,有一條直角長(zhǎng)為m2n2,則該直角三角形一定為“整數(shù)直角三角形”;

2)有一個(gè)直角三角形兩直角邊長(zhǎng)分別為,斜邊長(zhǎng)4,且ab均為正整數(shù),用含b的代數(shù)式表示a,并求出ab的值;

3)若c1a12+b12,c2a22+b22,其中,a1a2、b1、b2均為正整數(shù).證明:存在一個(gè)整數(shù)直角三角形,其斜邊長(zhǎng)為c1c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,EAB上一點(diǎn),DE、CE分別是∠ADC、BCD的平分線,若AD=5,DE=6,則平行四邊形的面積為(

A.96B.48C.60D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC于點(diǎn)F,連接DF,下列四個(gè)結(jié)論:①△AEF∽△CAB;CF2AF;DFDC;S四邊形CDEFSABF.其中正確的結(jié)論有 ) 

 

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司購(gòu)買了一批、型芯片,其中型芯片的單價(jià)比型芯片的單價(jià)少9元,已知該公司用3120元購(gòu)買型芯片的條數(shù)與用4200元購(gòu)買型芯片的條數(shù)相等.

(1)求該公司購(gòu)買的、型芯片的單價(jià)各是多少元?

(2)若兩種芯片共購(gòu)買了200條,且購(gòu)買的總費(fèi)用為6280元,求購(gòu)買了多少條型芯片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠EFG的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形四個(gè)角上,分別剪去大小相等的等腰直角三角形,當(dāng)三角形的直角邊由小變大時(shí),陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:

三角形的直角邊長(zhǎng)/

1

2

3

4

5

6

7

8

9

10

陰影部分的面積/

398

392

382

368

350

302

272

200

(1)在這個(gè)變化過(guò)程中,自變量、因變量各是什么?

(2)請(qǐng)將上述表格補(bǔ)充完整;

(3)當(dāng)?shù)妊苯侨切蔚闹苯沁呴L(zhǎng)由增加到時(shí),陰影部分的面積是怎樣變化的?

(4)設(shè)等腰直角三角形的直角邊長(zhǎng)為,圖中陰影部分的面積為,寫出的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案