【題目】如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小紅在D處觀測(cè)旗桿頂部A的仰角為47°,觀測(cè)旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.

【答案】解:根據(jù)題意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.
過點(diǎn)D作DF⊥AC于點(diǎn)F.
則∠DFC=90°∠ADF=47°,∠BDF=42°.
∵四邊形DECF是矩形.
∴DF=EC=21,F(xiàn)C=DE=1.56,
在直角△DFA中,tan∠ADF=
∴AF=DFtan47°≈21×1.07=22.47(m).
在直角△DFB中,tan∠BDF=
∴BF=DFtan42°≈21×0.90=18.90(m),
則AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).
BC=BF+FC=18.90+1.56=20.46≈20.5(m).
答:旗桿AB的高度約是3.6m,建筑物BC的高度約是20.5米.

【解析】根據(jù)題意分別在兩個(gè)直角三角形中求得AF和BF的長后求差即可得到旗桿的高度,進(jìn)而求得BC的高度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地農(nóng)民一直保持著冬種油菜的習(xí)慣,利用農(nóng)閑冬種一季油菜.該地農(nóng)業(yè)部門對(duì)2017年的油菜籽生產(chǎn)成本、市場(chǎng)價(jià)格、種植面積和產(chǎn)量等進(jìn)行了調(diào)查統(tǒng)計(jì),并繪制了如下的統(tǒng)計(jì)表與統(tǒng)計(jì)圖(如圖):

每畝生產(chǎn)成本

每畝產(chǎn)量

油菜籽市場(chǎng)價(jià)格

種植面積

110

130千克

3/千克

500 000

請(qǐng)根據(jù)以上信息解答下列問題:

(1)種植油菜每畝的種子成本是多少元?

(2)農(nóng)民冬種油菜每畝獲利多少元?

(3)2017年該地全縣農(nóng)民冬種油菜的總獲利是多少元?(結(jié)果用科學(xué)記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,點(diǎn)D、EAB上,將ACD、BCE分別沿CD、CE翻折,點(diǎn)AB分別落在點(diǎn)A′、B′的位置,再將A′CD、B′CE分別沿A′C、B′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則∠A′OB′的度數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且ABCDE、FAD上兩點(diǎn),CEADBFAD.若CEa,BFb,EFc,則AD的長為(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線分別交AB、BC于點(diǎn)M、P,AC的垂直平分線分別交AC、BC于點(diǎn)N、Q,∠BAC=110°,則∠PAQ=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=7,點(diǎn)D在邊BC上,CD=3,⊙A的半徑長為3,⊙D與⊙A相交,且點(diǎn)B在⊙D外,那么⊙D的半徑長r的取值范圍是( )

A.1<r<4
B.2<r<4
C.1<r<8
D.2<r<8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案