【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于,AD=4,BE=1.
(1)求證:△ADC≌△CEB;
(2)求的長。
科目:初中數(shù)學 來源: 題型:
【題目】在探究兩個三角形滿足兩邊和其中一邊的對角對應相等(“SSA”)是否能判定兩個三角形全等時,我們設計不同情形進行探究:
(1)例如,當∠B 是銳角時,如圖 ,BC=EF,∠B=∠E,在射線 EM 上有點 D,使 DF=AC,用尺規(guī)畫出符合條件的點 D,則△ABC 和△DEF 的關系是( );
A.全等 B. 不全等 C. 不一定全等
我們進一步發(fā)現(xiàn)如果能確定這兩個三角形的形狀,那么“SSA”是成立的.
(2)例如,已知:如圖,在銳角△ABC 和銳角△DEF 中,AC=DF,BC=EF,∠B=∠E. 求證:△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC和△DEF(頂點為網格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(-1,0),點B在直線上運動,當線段AB最短時,點B的坐標為( )
A. (0,0) B. (,) C. (,) D. (,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,△ABC中,∠A=90°,AB=AC,D是BC邊上的中點,E、F分別是AB、AC上的點,且∠EDF=90°,求證:BE=AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,點,,,在一條直線上,,過,分別作,,若.
(1)求證:.
(2)若將的邊沿方向移動得到圖②,其他條件不變,(1)中結論是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應黨的“文化自信”號召,某校開展了古詩詞誦讀大賽活動,現(xiàn)隨機抽取部分同學的成績進行統(tǒng)計,并繪制成如下的兩個不完整的統(tǒng)計圖,請結合圖中提供的信息,解答下列各題:
(1)直接寫出a的值,a= ,并把頻數(shù)分布直方圖補充完整.
(2)求扇形B的圓心角度數(shù).
(3)如果全校有2000名學生參加這次活動,90分以上(含90分)為優(yōu)秀,那么估計獲得優(yōu)秀獎的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學問題:計算(其中m,n都是正整數(shù),且m≥2,n≥1).
探究問題:為解決上面的數(shù)學問題,我們運用數(shù)形結合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關系和幾何圖形巧妙地結合起來,并采取一般問題特殊化的策略來進行探究.
探究一:計算.
第1次分割,把正方形的面積二等分,其中陰影部分的面積為;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是.
根據(jù)第n次分割圖可得等式: +++…+=1﹣.
探究二:計算+++…+.
第1次分割,把正方形的面積三等分,其中陰影部分的面積為;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是.
根據(jù)第n次分割圖可得等式: +++…+=1﹣,
兩邊同除以2,得+++…+=﹣.
探究三:計算+++…+.
(仿照上述方法,只畫出第n次分割圖,在圖上標注陰影部分面積,并寫出探究過程)
解決問題:計算+++…+.
(只需畫出第n次分割圖,在圖上標注陰影部分面積,并完成以下填空)
根據(jù)第n次分割圖可得等式:_________,
所以, +++…+=________.
拓廣應用:計算 +++…+.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com